高二数学数列的递推公式内容摘要:
( 2) 这个数列 的通项公式是。 113 3 ( 2)n n n na a a a n= + \ = ?Q 2 1 3 2 4 3 13 , 3 , 3 , , 3nna a a a a a a a \ = = = 鬃鬃鬃 =若将上述 n1个式子左右两边分别相加,便可得: 13 ( 1 ) ( 2)na a n n = ?即 5 3 ( 1 ) 3 2( 2)na n n n\ = + = + ?11 , 3 2( 1 )5 nn a n na= \ = + ?=Q 满 足 上 式又 时\ 这 个 数 列 的 前 5 项 为 :5,8,11,14,17.{}nann四、课堂练习: 1已知数列 满足: 写出这个数列 的前五项为。 2. 已知数列 满足: a1=2,an=2an- 1( n≥2) ( 1) 写出这个数列 的前五项为。 ( 2) 这个数列 的通项公式是。 1111( 2)1nnnanaaa 236。 =239。 239。 239。 239。 179。 237。 239。 =+239。 239。 239。 238。 5 29 9411 , 2 , , ,2 10 2902, 4, 8, 16, 32 2 ( )nna n N {}nana{}na n{}na。高二数学数列的递推公式
相关推荐
内有 n条直线 ,其中任何两条不平行 ,任何三条不过同一点 ,证明交点的个数 f(n)等于 n(n1)/2. 证 :(1)当 n=2时 ,两条直线 的交点只有 1个 ,又f(2)=2•(21)/2=1,因此 ,当 n=2时命题成立 . (2)假设当 n=k(k≥ 2)时命题成立 ,就是说 ,平面内满足 题设的任何 k条直线 的交点个数 f(k)等于 k(k1)/2. 以下来考虑平面内有
( 2)已知抛物线的焦点坐标是 F( 0, 2), 求它的标准方程。 根据下列条件写出抛物线的标准方程: ( 1)焦点是 F( 3,0); ( 2)准线方程是 x=- ; ( 3)焦点到准线的距离是 2; y2=12x y2=x y2=4x , y2=- 4x , x2=4y , x2=- 4y 41 已知抛物线的方程是 x2 +4y=0, 求它的焦点坐标和准线方程 . 解 : 把 抛物线的方程
R x∈ R y≥0 y≤0 x∈ R l F y x O 12p x x 12()p x x 12p y y 12()p y y02p x02p x02p y02p y关于 x轴对称 关于 x轴对称 关于 y轴对称 关于 y轴对称 ( 0,0) ( 0,0) ( 0,0) ( 0,0) 例 F的直线交抛物线于 A,B两点 ,通过点 A和抛物线顶点的直线交抛物线的准线于点
义域是 ( ∞ , +∞ ) 值 域是 ( 0, +∞) ( 0, +∞) 值 域 是 ( ∞ , +∞ ) 新课 9 3. 应用练习 例 1 写出下列各指数函数的反函数 xxx yyy )3()51()2(5)1( 解 yx 5lo gxy 5l o gyx51lo gxy51l o gyx gxy o g即 是所求的反函数 . 新课 根据指数与对数的关系 及 反函数的定义