精华经典版122页高考数学知识点总结及高中数学解题思想方法全部内容精华版内容摘要:

167。 05. 平面向量 知识要点(1)向量的基本要素:大小和方向.(2)向量的表示:几何表示法 ;字母表示:a;坐标表示法 a=xi+yj=(x,y).(3)向量的长度:即向量的大小,记作|a|.(4)特殊的向量:零向量a=O|a|=O.单位向量aO为单位向量|aO|=1.(5)相等的向量:大小相等,方向相同(x1,y1)=(x2,y2)(6) 相反向量:a=bb=aa+b=0(7)平行向量(共线向量):方向相同或相反的向量,∥.运算类型几何方法坐标方法运算性质向量的加法向量的减法三角形法则,数乘向量,满足:2.0时, 同向。 0时, 异向。 =0时, .向量的数量积是一个数,.2. 、公式(1)平面向量基本定理e1,e2是同一平面内两个不共线的向量,那么,对于这个平面内任一向量,有且仅有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)两个向量平行的充要条件a∥ba=λb(b≠0)x1y2-x2y1=O.(3)两个向量垂直的充要条件a⊥bab=Ox1x2+y1y2=O.(4)线段的定比分点公式设点P分有向线段所成的比为λ,即=λ,则=+ (线段的定比分点的向量公式) (线段定比分点的坐标公式)当λ=1时,得中点公式:=(+)或 (5)平移公式设点P(x,y)按向量a=(h,k)平移后得到点P′(x′,y′),则=+a或曲线y=f(x)按向量a=(h,k)平移后所得的曲线的函数解析式为:y-k=f(x-h)(6)正、余弦定理正弦定理:余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面积计算公式:设△ABC的三边为a,b,c,其高分别为ha,hb,hc,半周长为P,外接圆、内切圆的半径为R,r.①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R④S△=1/2sinCab=1/2acsinB=1/2cbsinA ⑤S△= [海伦公式] ⑥S△=1/2(b+ca)ra[如下图]=1/2(b+ac)rc=1/2(a+cb)rb[注]:到三角形三边的距离相等的点有4个,一个是内心,其余3个是旁心.如图: 图1中的I为S△ABC的内心, S△=Pr 图2中的I为S△ABC的一个旁心,S△=1/2(b+ca)ra 附:三角形的五个“心”;重心:三角形三条中线交点.外心:三角形三边垂直平分线相交于一点.内心:三角形三内角的平分线相交于一点.垂心:三角形三边上的高相交于一点.旁心:三角形一内角的平分线与另两条内角的外角平分线相交一点.⑸已知⊙O是△ABC的内切圆,若BC=a,AC=b,AB=c [注:s为△ABC的半周长,即]则:①AE==1/2(b+ca) ②BN==1/2(a+cb) ③FC==1/2(a+bc)综合上述:由已知得,一个角的邻边的切线长,等于半周长减去对边(如图4). 特例:已知在Rt△ABC,c为斜边,则内切圆半径r=(如图3). ⑹在△ABC中,有下列等式成立.证明:因为所以,所以,结论。 ⑺在△ABC中,D是BC上任意一点,则.证明:在△ABCD中,由余弦定理,有①在△ABC中,由余弦定理有②,②代入①,化简可得,(斯德瓦定理)①若AD是BC上的中线,;②若AD是∠A的平分线,其中为半周长;③若AD是BC上的高,其中为半周长.⑻△ABC的判定:△ABC为直角△∠A + ∠B =<△ABC为钝角△∠A + ∠B<>△ABC为锐角△∠A + ∠B>附:证明:,得在钝角△ABC中,⑼平行四边形对角线定理:对角线的平方和等于四边的平方和.空间向量1.空间向量的概念:具有大小和方向的量叫做向量注:⑴空间的一个平移就是一个向量⑵向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量⑶空间的两个向量可用同一平面内的两条有向线段来表示2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下运算律:⑴加法交换律:⑵加法结合律:⑶数乘分配律:3 共线向量表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量.平行于记作.当我们说向量、共线(或//)时,表示、的有向线段所在的直线可能是同一直线,也可能是平行直线.4.共线向量定理及其推论:共线向量定理:空间任意两个向量、(≠),//的充要条件是存在实数λ,使=λ.推论:如果为经过已知点A且平行于已知非零向量的直线,那么对于任意一点O,点P在直线上的充要条件是存在实数t满足等式 .其中向量叫做直线的方向向量.5.向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:.通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的6.共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有 ①①式叫做平面的向量表达式7 空间向量基本定理:如果三个向量不共面,那么对空间任一向量,存在一个唯一的有序实数组,使推论:设是不共面的四点,则对空间任一点,都存在唯一的三个有序实数,使8 空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:.9.向量的模:设,则有向线段的长度叫做向量的长度或模,记作:.10.向量的数量积: .已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影. 可以证明的长度.11.空间向量数量积的性质: (1).(2).(3).12.空间向量数量积运算律:(1).(2)(交换律)(3)(分配律).空间向量的坐标运算一.知识回顾:(1)空间向量的坐标:空间直角坐标系的x轴是横轴(对应为横坐标),y轴是纵轴(对应为纵轴),z轴是竖轴(对应为竖坐标).①令=(a1,a2,a3),,则 ∥ (用到常用的向量模与向量之间的转化:)②空间两点的距离公式:.(2)法向量:若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:①利用法向量求点到面的距离定理:如图,设n是平面的法向量,AB是平面的一条射线,其中,则点B到平面的距离为.②利用法向量求二面角的平面角定理:设分别是二面角中平面的法向量,则所成的角就是所求二面角的平面角或其补角大小(方向相同,则为补角,反方,则为其夹角).③证直线和平面平行定理:已知直线平面,且CDE三点不共线,则a∥的充要条件是存在有序实数对使.(常设求解若存在即证毕,若不存在,则直线AB与平面相交). 高中数学第六章不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.数学探索169。 :数学探索169。 (1)理解不等式的性质及其证明.数学探索169。 (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.数学探索169。 (3)掌握分析法、综合法、比较法证明简单的不等式.数学探索169。 (4)掌握简单不等式的解法.数学探索169。 (5)理解不等式│a││b│≤│a+b│≤│a│+│b│167。 06. 不 等 式 知识要点1. 不等式的基本概念(1) 不等(等)号的定义:(2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式.(3) 同向不等式与异向不等式.(4) 同解不等式与不等式的同解变形.(1)(对称性)(2)(传递性)(3)(加法单调性)(4)(同向不等式相加)(5)(异向不等式相减)(6)(7)(乘法单调性)(8)(同向不等式相乘)(异向不等式相除)(倒数关系)(11)(平方法则)(12)(开方法则)(1)(2)(当仅当a=b时取等号)(3)如果a,b都是正数,那么 (当仅当a=b时取等号)极值定理:若则:如果P是定值, 那么当x=y时,S的值最小; 如果S是定值, 那么当x=y时,P的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等. (当仅当a=b=c时取等号)(当仅当a=b时取等号)(7) (1)平均不等式: 如果a,b都是正数,那么 (当仅当a=b时取等号)即:平方平均≥算术平均≥几何平均≥调和平均(a、b为正数):特别地,(当a = b时,)幂平均不等式:注:例如:.常用不等式的放缩法:①②(2)柯西不等式: (3)琴生不等式(特例)与凸函数、凹函数若定义在某区间上的函数f(x),对于定义域中任意两点有则称f(x)为凸(或凹)函数. 比较法、综合法、分析法、换元法、反证法、放缩法、构造法.(1)整式不等式的解法(根轴法). 步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例① 一元一次不等式axb解的讨论;②一元二次不等式ax2+bx+c0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,则(3)无理不等式:转化为有理不等式求解 (4).指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式应用分类讨论思想去绝对值; 应用数形思想;应用化归思想等价转化注:常用不等式的解法举例(x为正数):① ②类似于,③ 高中数学第七章直线和圆的方程考试内容:数学探索169。 ,直线方程的点斜式和两点式.直线方程的一般式.数学探索169。 .两条直线的交角.点到直线的距离.数学探索169。 .简单的线性规划问题.数学探索169。 .由已知条件列出曲线方程.数学探索169。 .圆的参数方程.数学探索169。 :数学探索169。 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.数学探索169。 (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.数学探索169。 (3)了解二元一次不等式表示平面区域.数学探索169。 (4)了解线性规划的意义,并会简单的应用.数学探索169。 (5)了解解析几何的基本思想,了解坐标法.数学探索169。 (6)掌握圆的标准方程和一般方程,了解参数方程的概念。 理解圆的参数方程.167。 07. 直线和圆的方程 知识要点一、直线方程.1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.注:①当或时,直线垂直于轴,它的斜率不存在.②每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①当为定植,变化时,它们表示过定点(0,)的直线束.②当为定值,变化时,它们表示一组平行直线.3. ⑴两条直线平行:∥两条直线平行的条件是:①和是两条不重合的直线. ②在和的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误.(一般的结论是:对于两条直线,它们在轴上的纵截距是,则∥,且或的斜率均不存在,即是平行的必要不充分条件,且)推论:如果两条直线的倾斜角为则∥. ⑵两条直线垂直:两条直线垂直的条件:①设两条直线和的斜率分别为和,则有这里的前提是的斜率都存在. ②,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)4. 直线的交角:⑴直线到的角(方向角);直线到的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当时.⑵两条相交直线与的夹角:两条相交直线与的夹角,是指由与相交所成的四个角中最小的正角,又称为和所成的角,它的取值范围是,当,则有.5. 过两直线的交点的直线系方程为参数,不包括在内)6. 点到直线的距离:⑴点到直线的距离公式:设点,直线到的距离为。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。