20xx年人教版小升初数学总复习资料内容摘要:
变化,另一种量也跟着变化,不过变化的规律相反,和反比例算法彼此相通。 数量关系式:单位数量单位个数247。 另一个单位数量 = 另一个单位数量 单位数量单位个数247。 另一个单位数量 = 另一个单位数量。 例 修一条水渠,原计划每天修 800 米 , 6 天修完。 实际 4 天修完,每天修了多少米。 分析:因为要求出每天修的长度,就必须先求出水渠的长度。 所以也把这类应用题叫做“归总问题”。 不同之处是“归一”先求出单一量,再求总量,归总问题是 先求出总量,再求单一量。 80 0 6 247。 4=1200 (米) ( 4) 和差问题 :已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。 解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。 解题规律:(和+差)247。 2 = 大数 大数-差 =小数 (和-差)247。 2=小数 和-小数 = 大数 例 某加工厂甲班和乙班共有工人 94 人,因工作需要临时从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人,求原来甲班和乙 班各有多少人。 分析:从乙班调 46 人到甲班,对于总数没有变化,现在把乙数转化成 2 个乙班,即 9 4 - 12 ,由此得到现在的乙班是( 9 4 - 12 )247。 2=41 (人),乙班在调出 46 人之前应该为 41+46=87 (人),甲班为 9 4 - 87=7 (人) ( 5)和倍问题: 已知两个数的和及它们之间的倍数 关系,求两个数各是多少的应用题,叫做和倍问题。 解题关键:找准标准数(即 1倍数)一般说来,题中说是“谁”的几倍,把谁就确定为标准数。 求出倍数和之后,再求出标准的数量是多 少。 根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。 解题规律:和247。 倍数和 =标准数 标准数倍数 =另一个数 例 :汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆。 分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数 115 辆内,为了使总数与( 5+1 )倍对应,总车辆数应( 1157 )辆。 列式为( 1157 )247。 ( 5+1 ) =18 (辆), 18 5+7=97 (辆) ( 6)差倍问题 :已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。 解题规律:两个数的差247。 (倍数- 1 ) = 标准数 标准数倍数 =另一个数。 例 甲乙两根绳子,甲绳长 63 米 ,乙绳长 29 米 ,两根绳剪去同样的长度,结果甲所剩的长度是乙绳 长的 3 倍,甲乙两绳所剩长度各多少米。 各减去多少米。 分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的 3 倍,实比乙绳 多( 31 )倍,以乙绳的长度为标准数。 列式( 6329 )247。 ( 31 ) =17 ( 米)„乙绳剩下的长度, 17 3=51 (米)„甲绳剩下的长度, 2917=12 (米)„剪去的长度。 ( 7)行程问题: 关于走路、行车等问题,一般都是计算路程、时间、速度,叫做行程问题。 解答这类问题首先要搞清楚速度、时间、路程、方向、杜速度和、速度差等概念,了解他们之间的关系,再根据这类问题的规律解答。 解题关键及规律: 同时同地相背而行:路程 =速度和时间。 同时相向而行:相遇时间 =速度和时间 同时同向而行(速度慢的在前,快的在后):追及时间 =路程速度差。 同时同地同向而行(速 度慢的在后,快的在前):路程 =速度差时间。 例 甲在乙的后面 28 千米 ,两人同时同向而行,甲每小时行 16 千米 ,乙每小时行 9 千米 ,甲几小时追上乙。 分析:甲每小时比乙多行( 169 )千米,也就是甲每小时可以追近乙( 169 )千米,这是速度差。 已知甲在乙的后面 28 千米 (追击路程), 28 千米 里包含着几个( 169 )千米,也就是追击所需要的时间。 列式 2 8 247。 ( 169 ) =4 (小时) ( 8)流水问题: 一般是研究船在“流水”中航行的问题。 它是行程问 题中比较特殊的一种类型,它也是一种和差问题。 它的特点主要是考虑水速在逆行和顺行中的不同作用。 船速:船在静水中航行的速度。 水速:水流动的速度。 顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。 顺速 =船速+水速 逆速 =船速-水速 解题关键:因为顺流速度是船速与水速的和,逆流速度是船速与水速的差,所以流水问题当作和差问题解答。 解题时要以水流为线索。 解题规律:船行速度 =(顺水速度 + 逆流速度)247。 2 流水速度 =(顺流速度逆流速度)247。 2 路程 =顺流速度 顺流航行 所需时间 路程 =逆流速度逆流航行所需时间 例 一只轮船从甲地开往乙地顺水而行,每小时行 28 千米 ,到乙地后,又逆水 航行,回到甲地。 逆水比顺水多行 2 小时,已知水速每小时 4 千米。 求甲乙两地相距多少千米。 分析:此题必须先知道顺水的速度和顺水所需要的时间,或者逆水速度和逆水的时间。 已知顺水速度和水流 速度,因此不难算出逆水的速度,但顺水所用的时间,逆水所用的时间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就可以就能算出顺水从甲地到乙地的所用的时间,这样就能算出甲乙两地的路程。 列 式为 284 2=20 (千米) 2 0 2 =40 (千米) 40 247。 ( 4 2 ) =5 (小时) 28 5=140 (千米)。 ( 9) 还原问题: 已知某未知数,经过一定的四则运算后所得的结果,求这个未知数的应用题,我们叫做还原问题。 解题关键:要弄清每一步变化与未知数的关系。 解题规律:从最后结果 出发,采用与原题中相反的运算(逆运算)方法,逐步推导出原数。 根据原题的运算顺序列出数量关系,然后采用逆运算的方法计算推导出原数。 解答还原问题时注意观察运算的顺序。 若需要先算加减法,后算乘除法时别忘记写括号。 例 某小学三年级四个班共有学生 168 人,如果四班调 3 人到三班,三班调 6 人到二班,二班调 6 人到一班,一班调 2 人到四班,则四个班的人数相等,四个班原有学生多少人。 分析:当四个班人数相等时,应为 168 247。 4 ,以四班为例,它调给三班 3 人,又从一班调入 2 人,所以四班原有的人数减去 3 再加上 2 等于平均数。 四班原有人数列式为 168 247。 42+3=43 (人) 一班原有人数列式为 168 247。 46+2=38 (人);二班原有人数列式为 168 247。 46+6=42 (人) 三班原有人数列式为 168 247。 43+6=45 (人)。 ( 10)植树问题 :这类应用题是以“植树”为内容。 凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树 棵树 =段数 +1 棵树 =总路程247。 株距 +1 株距 =总路程247。 (棵树 1) 总路程 =株距(棵树 1) 沿周长植树 棵树 =总路程247。 株距 株距 =总路程247。 棵树 总路程 =株距棵树 例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米。 后来全部改装,只埋了201 根。 求改装后每相邻两根的间距。 分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。 列式为 50 ( 3011 )247。 ( 2011 ) =75 (米) ( 11 )盈亏问题: 是在等分除法的基础上发展起来的。 他的特点是把一定数量的物品,平均分配给一定数量的人,在两次分配中,一次有余,一 次不足(或两次都有余),或两次都不足),已知所余和不足的数量,求物品适量和参加分配人数的问题,叫做盈亏问题。 解题关键:盈亏问题的解法要点是先求两次分配中分配者没份所得物品数量的差,再求两次分配中各次共分物品的差(也称总差额),用前一个差去除后一个差,就得到分配者的数,进而再求得物品数。 解题规律:总差额247。 每人差额 =人数 总差额的求法可以分为以下四种情况: 第一次多余,第二次不足,总差额 =多余 + 不足 第一次正好,第二次多余或不足 ,总差额 =多余或不足 第一次多余,第二次也多余,总差额 =大多余 小多余 第一次不足,第二次也不足, 总差额 = 大不足 小不足 例 参加美术小组的同学,每个人分的相同的支数的色笔,如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。 求每人 分得几支。 共有多少支色铅笔。 分析:每个同学分到的色笔相等。 这个活动小组有 12 人,比 10 人多 2 人,而色笔多出了( 255 ) =20 支 , 2 个人多出 20 支,一个人分得 10 支。 列式为( 255 )247。 ( 1210 ) =10 (支) 10 12+5=125 ( 支)。 ( 12)年龄问题: 将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”。 解题关键:年龄问题与和差、和倍、 差倍问题类似,主要特点是随着时间的变化,年岁不断增长,但大小两个不同年龄的差是不会改变的,因此,年龄问题是一种“差不变”的问题,解题时,要善于利用差不变的特点。 例 父亲 48 岁,儿子 21 岁。 问几年前父亲的年龄是儿子的 4 倍。 分析:父子的年龄差为 4821=27 (岁)。 由于几年前父亲年龄是儿子的 4 倍,可知父子年龄的倍数差是( 41 )倍。 这 样可以算出几年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。 列式为: 21( 4821 )247。 ( 41 ) =12 (年) ( 13)鸡兔问题: 已知“鸡兔”的总头数和总腿数。 求“鸡”和“兔”各多少只的一类应用题。 通常称为“鸡兔问题”又称鸡兔同笼问题 解题关键:解答鸡兔问题一般采用假设法,假设全是一种动物(如全是“鸡”或全是“兔”,然后根据出现的腿数差,可推算出某一种的头数。 解题规律:(总腿数-鸡腿数总头数)247。 一只鸡兔腿数的差 =兔子只数 兔子只数 =(总腿数 2总头数)247。 2 如果假设全是兔子,可以有下面的式子: 鸡的只数 =( 4总头数 总腿数)247。 2 兔的头数 =总头数 鸡的只数 例 鸡兔同笼共 50 个头, 170 条腿。 问鸡兔各有多少只。 兔子只数 ( 1702 50 )247。 2 =35 (只) 鸡的只数 5035=15 (只) (二)分数和百分数的应用 1 分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。 2 分数乘法应用题: 是指已知一 个数,求它的几分之几是多少的应用题。 特征:已知单位“ 1”的量和分率,求与分率所对应的实际数量。 解题关键:准确判断单位“ 1”的量。 找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。 3 分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少。 特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。 “一个数”是比较量,“另一个数”是标准量。 求分率或百分率,也就是求他们的倍数关系。 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一 ”,谁和单位一的量作比较,谁就作被除数。 甲是乙的几分之几(百分之几) :甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。 关系式(甲数减乙数) /乙数或(甲数减乙数) /甲数。 已知一个数的几分之几(或百分之几 ) ,求这个数。 特征:已知一个实际数量和它相对应的分率,求单位“ 1”的量。 解题关键:准确判断单位“ 1”的量把单位“ 1”的量看成 x根据分数乘法的意义列方程,或 者根据分数除法的意义列算式,但必须找准和分率相对应的已 知实际 数量。 4 出勤率 发芽率 =发芽种子数 /试验种子数 100% 小麦的出粉率 = 面粉的重量 /小麦的重量 100% 产品的合格率 =合格的产品数 /产品总数 100% 职工的出勤率 =实际出勤人数 /应出勤人数 10。20xx年人教版小升初数学总复习资料
相关推荐
)是锐角, ( )是钝角。 A B C D E F 在 里填上正确的运算符号。 42 6=7 5 3=15 30 5 = 25 24 6=30 7 1=7 2 1> 2 认真想,仔细填。 24247。 ( )= 6 ( ) 7= 35 64247。 ( )= 8 40247。 ( )= 5 27247。 ( )= 9 ( ) 6= 48 想一想,( )里最大能填几。 8( )﹤ 36 28﹥(
位数 10000少 1的数是( )。 ( )。 594900四舍五入到万位约是( )万。 ,写作( )元。 三、写出或读出下列各数。 八万三千零八写作 :__________________________________ 一千零一十万二千写作 :__________________________________ 六亿零七千写作
) A. 1 个 B. 2个 C. 3 个 等边三角形一定是 ( )。 A.直角三角形 B.锐角三角形 C.钝角三角形 用两个三角形拼成一个平行四边形,这两个三角形应是 ( )。 A.完全一样的三角形 B.等底等高的三角形 C.等边三 角形 一个三角形中最大的角是锐角,这个三角形是 ( )。 A.锐角三角形 B.直角三角形 C.钝角三角形 四、动手画一画。 13% ① 画出以下三角形
小红做了 36朵花,是小翠所做的花的 3倍,小翠做了( )朵花。 小明座位的西南方向是张强的座位,那么小明在张强的 ( )方向。 A.东南 C.东北 三位数除以一位数,被除数的最高位够除时,商是 ( ) 下面三组数中,被 3除没有余数的一组是 ( )。 A. 48,51 ,16 ,72 小刚从家去邮局寄信,然后要去小东家玩,小刚家在邮局西面 80米,小东家在邮局东面 50米。
任的角度来说,小赵的行为( ) A.是为他人着想,是完全正确和合理的 B.是对自己负责,关心爱护同学 C.是对他人负责,但没有注意方式方法 D.是对社会负责,为社会做贡献 11. 被誉为“微 软之父”的比 尔•盖茨在读初中时结识了比他高两级的保罗•艾伦。 两人很快就成为朋友,建立了浓厚的友谊。 他们在生活上互相帮助,在学习上互相鼓励,后来又一起钻研计算机技术,共同创办了微软公司,取得了骄人的成就
+9 9. 想一想,△、□、○里应填的数是多少。 □ +○ =16 ○-△ =3 △ +4=10 □ = ( ) △ =( ) ○ =( ) 个苹果,每 5 个装一包,可以装满( ) 包, 还剩( )个。 三、 看图列式计算。 四、根据条件和算式,哪个问题提得对,就在( )里打“√”。 1.一年级一班有男生 20 人,女生 22 人。 算式: 22- 20 问题:①一年级一班共有学生多少人。 (