新人教a版高中数学必修2第四章圆与方程过关测试题内容摘要:

 ; ② 被 轴分成两段圆弧,其弧长的比为 3:1 ; ③ 圆心到直线 l : 20xy的距离为 55 的圆的方程 . 答案与提示 一. 选择题 1- 4. DDAB 5- 8. BBAA 9- 12. CCAB 提示: 1 .因为 方程 0122 222  aaayaxyx 表 示 圆 , 所 以2 2 2( 2 ) 4( 2 1 ) 0a a a a    ,解 得 22 3a   . 2.因为以( 5, 6)和( 3,- 4)为直径端点,所以圆心为( 4, 1),半径为 26 . 3.提示一:由圆的方程,解出交点的坐标,由直线方程的两点式,得出直线方程. 提示二:两圆的方程相减,得出直线方程. 4.因为 曲线 x2+y2+a2x+(1–a2)y–4=0 关于直线 y–x=0的对称曲线仍是其本身,所以直线 y–x=0过圆心 . 5.提示一:将直线方程代入圆的方程,根的判别式大于 0. 提示二:圆心到直线的距离小 于圆的半径. 6.因为直线 )0(0  a b ccbyax 与圆 122 yx 相切,所以圆心到直线的距离等于半径,整理得 2 2 2a b c. 7.两圆圆心分别为( 2, 2),( 2, 5),所以圆心距为 5,两圆半径为 2, 4,所以两圆位置关系为:相交.其公切线为两条. 8.提示一:设圆心为 (, )ab ,半径为 r ,则 2 3 0ab   , 2 2 2( 5 ) ( 2)a a r   ,2 2 2( 3 ) ( 2)a a r   解出,即可.提示二:设为圆的一般方程,代入解出. 9.圆心到直线的距离为 32 ,圆的半径为 1,由勾股定理,得弦长为 1. 10. xy 可看成圆上的点与原点的斜率,画图可知, xy 取值范围是 ]33,33[. 11. 因点 ),( baM ( 0ab )是圆 C : 222 ryx  内一点,故 2 2 2a b r.直线 l 是以 M为中点的弦所在的直线,直线 l 的方程为 ()ay b x ab   ,其与直线 l 平行圆心到直线 l的距离 222rdrab , l 与圆 C 相离. 12. 曲线 x= 21 y 表示:圆 221xy的 y 轴右侧部分, 直线 y = x + b 与曲线 x= 21 y有且仅有一个公共点,则或者相交一个交点,此时 b 大于 1 小于等于 1; 或者两者相切此时2b . 二.填空题 13.( 0, 0, 3); 14. 1622 yx ; 15. 032  yx ; 16. 4 个. 提示: 13.设 的坐标P 为( 0, 0,Z)则 222222 )222121 ZZ ()(  ,解得 Z=3. 14.弦 BC 的中点到圆心的距离不变为 4,故其轨迹为 1622 yx . 15. 过 P( 1, 2)的直线 l把圆 05422  xyx 分成两个弓形当其中劣孤最短时, P 为直线截圆所成弦的中点,由斜率公。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。