20xx春人教版数学八年级下册平行四边形的判定基础练习内容摘要:

选②、③或选②、④ ,则不能使四边形 ABCD是平行四边形 .其他 4种选法 ,即选①、②或①、③或①、④或③、④ ,则均能使四边形 ABCD为平行 四边形 . 2.【解析】 选 ,如图所示 : 分三种情况考虑 :①以 CB为对角线作平行四边形 ABD1C,此时第四个顶点 D1落在第一象限。 ②以 AC为对角线作平行四边形 ABCD2,此时第四个顶点 D2落在第二象限。 ③以 AB 为对角线作平行四边形 ACBD3,此时第四个顶点 D3落在第四象限 , 则第四个顶点不可能落在第三象限 . 3.【解析】 选 A关于直线 a 的对称点 A39。 ,连接 A39。 B交直线 b 于点 N,过点 N 作 NM⊥直线 a,连接 AM,此时AM+MN+NB 的值最小 . ∵ A 到直线 a的距离为 2,a与 b 之间的距离为 4, ∴ AA39。 =MN=4, ∴四边形 AA39。 NM是平行四边形 , ∴ AM+NB=A39。 N+NB=A39。 B, 过点 B 作 BE ⊥ AA39。 , 交 AA39。 于点 E, 易得AE=2+4+3=9,AB=2 ,A39。 E=2+3=5, 在 Rt△ AEB 中 ,BE= = , 在 Rt△ A39。 EB中 ,A39。 B= =8] 4.【解析】 已知 AB∥ CD,可根据。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。