21空间中直线与直线之间的位置关系1内容摘要:

C1 B1 A1 C A B D NEXT BACK 在平面内 ,两条直线相交成四 个角 , 其中 不大于 90度 的角称为它 们的夹角 , 用以刻画两直线的错开 程度 , 如图 . 在空间 ,如图所示 , 正方体ABCD- EFGH中 , 异面直线 AB与 HF的错开程度可以怎样来刻画呢 ? A B G F H E D C O (2)问题提出 (1)复习回顾 NEXT BACK (3)解决问题 异面直线所成角的定义 : 如图 ,已知两条异面直线 a , b , 经过空间任一点 O作 直线 a′∥ a , b ′∥ b 则把 a ′与 b ′所成的锐角 (或直角 )叫做异面直线所成的角(或夹角 ). a b b ′ ′ O 思想方法 : 平移转化成相交直线所成的角 ,即化空间图形问题为平面图形问题 思考 : 这个角的大小与 O点的位置有关吗 ? 即 O点位置不同时 , 这一角的大小是否改变 ? NEXT BACK 异面直线所成的角的范围 ( 0 , 90 ] o o 如果两条异面直线 a , b 所成的角为直角,我们就称这两条直线互相垂直 , 记为 a ⊥ b ″ NEXT BACK 思考 : 这个角的大小与 O点的位置有关吗 ? 即 O点位置不同时 , 这一角的大小 是否改变 ? ∵ a′∥ a , a″ ∥ a∴ a′∥ a″ (公理 4), 解答: 如图 设 a ′与 b ′相交所成的角为 ∠ 1, a ″与 b 所成的角为 ∠ 2 , 同理 b′∥ b″, ∴ ∠ 1 = ∠ 2 (等角定理 ) b ′ a′ O ∠ 1 a。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。