语文版中职数学拓展模块62等差数列的性质3内容摘要:
m+ an= 2 ak. (2) 已知 { an} 是等差数列 , 若 a3+ a4+ a5+ a6+ a7= 450 , 求 a2+ a8. 【思路分析】 依性质 (6) 若 m + n = p + q ,则 am+ an= ap+aq解答. 【解析】 ∵ a3+ a7= a4+ a6= 2 a5= a2+ a8, ∴ a3+ a4+ a5+ a6+ a7= 5 a5= 450 ⇒ a5= 90. ∴ a2+ a8= 2 a5= 180. 探究 2 解决本类问题一般有两种方法:一是运用等差数列{ an} 的性质:若 m + n = p + q = 2 ω ,则 am+ an= ap+ aq= 2 aω( m , n ,p , q , ω 都是正整数 ) ;二是利用通项公式转化为数列的首项与公差的结构完成运算 ,属于通性通法,两种方法都运用了整体代换与方程的思想. 思考题 2 ( 1) 在等差数列 { an} 中,已知 a4+ a8= 16 ,则 a2+ a10= ( ) A . 12 B . 16 C . 20 D . 24 【解析】 由等差数列的性质知, a 2 + a 10 = a 4 + a 8 = 16 ,故选 B 项. 【答案】 B (2) 在等差数列 { an} 中 a1- a4- a8- a12+ a15= 2 ,则 a3+ a13=__________. 【答案】 - 4 (3) 等差数列 { an} 中, a1+ a2+ a3=- 24 , a18+ a19+ a20= 78 ,则 a3+ a18等于 ( ) A . 16 B . 18 C . 20 D . 22 【答案】 B 例 3 设方程 ( x2- 2 x + m ) ( x2- 2 x + n ) = 0 的四个根组成一个首项为14的等差数列,则 | m - n |= ( ) A . 1 B.34 C.12 D.38 【解析】 ∵ 方程 x2- 2 x + m = 0 和 x2- 2 x + n = 0。语文版中职数学拓展模块62等差数列的性质3
相关推荐
2001I: 19V: 047I: s 981. It up a 992 998 a in a by It 00 in In is In s to be of As. s I: 2000 a in to s 002 of ens a of x s 1996 of of A de o., of A of s 1988 of on of o., , a of a of on s on i s on
3, 1999(is of a a to to on it is to we on we to of s is to of in MS on of we MS is we we MS us to do MS is on a of on of as it is to a of of No or to of as as of MS on as we if a of on a of in to be
第四 fourth 4th 5th sixth 6th seventh 7th 8th 9th first scond third fifth eighth ninth 10 ten tenth 10th 11 eleven eleventh 11th 12 twelve 12th 13 thirteen thirteenth 13th 14 fourteen fourteenth 14th
mBmAmBmABmAm1020 1 0 02)2(30 222 ∴ S3m=A(3m)2+B3 m=210 解法三:根据等差数列性质知: Sm,S2m-Sm,S3m- S2m也成等差数列,从而有: 2(S2m- Sm)=Sm+(S3m- S2m) ∴ S3m=3(S2m- Sm)=210 解法四:令 m=1得 S1=30, S2=100,得a1=30,a1+a2=100,∴
式的解法 先整理成标准型f x g x 0(0) 或f x g x ≥ 0( ≤ 0) ,再化成整式不等式来解; (1)f x g x 0 ⇔ f ( x ) g ( x )0 ; (2)f x g x 0 ⇔ f ( x ) g ( x )0 ; (3)f x g x ≥ 0 ⇔ f x g x ≥ 0 ,g
(单侧) u uu u 陈学芬 制作 27 2020年 12月 24日星期四 1. 概括估计变量值频数分布范围 例:在例 , n=132, = , s=,试估计 95%和 99%的频数分布范围。 (~, ~) 2. 制定医学参考值范围 3. 控制实验误差: 上下警戒限: 上下控制限: s2xs3x x陈学芬 制作 28 2020年 12月 24日星期四