高中数学苏教版选修2-1第1章常用逻辑用语12第2课时内容摘要:
知 , d= r是直线 l不 ⊙ O相切的充要条件 . 规律方法 (1)证明充要条件 , 一般是从充分性和必要性两方面进行 , 此时应特别注意充分性和必要性所推证的内容是什么 . (2)要分清命题中的条件和结论 , 防止充分性和必要性弄颠倒 , 由条件 ⇒结论是证充分性 , 由结论 ⇒条件是证必要性 . 跟踪演练 2 求证:关于 x的方程 ax2+ bx+ c= 0有一个根为 1的充要条件是 a+ b+ c= 0. 证明 必要性: ∵ 方程 ax2+ bx+ c= 0有一个根为 1, ∴ x= 1满足方程 ax2+ bx+ c= 0, ∴ a12+ b1+ c= 0, 即 a+ b+ c= 0, ∴ 必要性成立 . 充分性: ∵ a+ b+ c= 0, ∴ c=- a- b, 代入方程 ax2+ bx+c= 0中 , 可得 ax2+ bx- a- b= 0, 即 (x- 1)(ax+ a+ b)= 0, 故方程 ax2+ bx+ c= 0有一个根为 1, ∴ 充分性成立 . 因此 , 关于 x的方程 ax2+ bx+ c= 0有一个根为 1的充要条件是 a+ b+ c= 0. 要点三 充要条件的应用 例 3 已知方程 x2+ (2k- 1)x+ k2= 0, 求使方程有两个大于 1的根的充要条件 . 解 设方程的两根分别为 x1, x2, 则 x1, x2都大于 1的充要条件是 2 k - 1 2- 4 k2≥ 0 ,。高中数学苏教版选修2-1第1章常用逻辑用语12第2课时
相关推荐
等价法主要用于否定性命题 .要判断 p是不是 q的充分条件 , 就要看 p能否推出 q, 要判断 p是不是 q的必要条件 , 就要看 q能否推出 p. 跟踪演练 1 下列 “ 若 p, 则 q” 形式的命题中 , p是 q的什么条件。 (充分不必要条件 , 必要不充分条件 , 既是充分条件也是必要条件 , 既不充分也不必要条件 ) (1)若 x= 1, 则 x2- 4x+ 3= 0; 解
栏目开关 填一填 练一练 研一研 结论 :存在性命题 p : ∃ x ∈ M , p ( x ) , 它的否定 綈 p : ∀ x ∈ M , 綈 p ( x ) . 存在性命题的否定是全称命题. 研一研 问题探究、课堂更高效 本课栏目开关 填一填 练一练 研一研 例 2 写出下列存在性命题的否定: ( 1) p : ∃ x ∈ R , x2+ 2 x + 2 ≤ 0 ; ( 2) p
= 2 成立时,可得 x - 1 = x - 1 成立,反过来,当 x - 1 = x - 1 成立时,可以推出 x = 1 或 x = 2 , ∴ p 既是 q 的充分条件也是 q 的必要条件. ( 3) 由 sin α sin β 不能推出 α β ,反过来由 α β 也不能推出 sin α sin β , ∴ p 既不是 q 的充分条件,也不是 q 的必要条件. 本课栏目开关 填一填
- 8 = 0. 本课时栏目开关 填一填 研一研 练一练 设直线 l 的方程为 4 x + y + c = 0 ,由题意有 | c + 8|17 = 17 . (二 ) ∴ c 1 = 9 , c 2 =- 25 ,所以直线 l 的方程为 4 x + y + 9 = 0 或 4 x + y - 25 = 0. 小结 利 用导数的几何意义来求曲线切线的斜率
目开关 填一填 研一研 练一练 ② 如图所示,如果 b ∥ α ,则 a , b 确定平面 β . 显然 α 与 β 相交,设 α ∩ β = c ,因为 b ∥ α ,所以 b ∥ c . 又 a ∥ b ,从而 a ∥ c ,且 a ⊄ α , c ⊂ α ,则 a ∥ α ,这与 a ∩ α = A 相矛盾 . 由 ①② 知,假设不成立,故直线 b 与平面 α 必相交 . 本课时栏目开关
3 r + 1 ≥ 2 20 - r 2 21 - r ≥ 3 r ,解之得 725 ≤ r ≤ 825 . 本课时栏目开关 填一填 研一研 练一练 因为 r ∈ N ,所以 r = 8 ,即 T 9 = C820 31228x12y8是系数绝对值最大的项. 研一研 问题探究、课堂更高效 ( 3) 由于系数为正的项为奇数项,故可设第 2 r - 1 项系数最大( r