高中数学人教b版必修3322内容摘要:
的交事件. (1) 某人射击,事件 A : “ 击中的环数大于 3 ” ,事件 B :“ 击中的环数小于 7 ” ; (2) 抛掷一颗骰子,事件 A : “ 出现奇数点 ” ,事件 B :“ 出现 3 点 ” ,事件 C : “ 出现偶数点 ” . 解 (1) 事件 A ∩ B = { 击中的环数大于 3 且小于 7} . (2) 事件 A ∩ B = { 出现 3 点 } ;事件 A ∩ C = ∅ ; 事件 B ∩ C = ∅ . 小结 (1) 根据定义判断事件的交. (2) 当 A ∩ C = ∅ 时, A 、 C 为互斥事件. 本课时栏目开关 填一填 研一研 练一练 跟踪训练 1 从 15 件产品 ( 其中有 2 件次品 ) 中任取 2 件产 品,记 A 为 “ 至少有 1 件正品 ” , B 为 “ 至少有 1 件次品 ” , 则 A ∩ B = ______________________________. 答案 { 取出两件产品, 1 件是正品, 1 件是次品 } 本课时栏目开关 填一填 研一研 练一练 探究点二 概率的一般加法公式 问题 当 A ∩ B = ∅ 时, P ( A ∪ B ) = P ( A ) + P ( B ) ;当 A ∩ B ≠∅ 时, P ( A ∪ B ) 等于什么。 为什么。 答 P ( A ∪ B ) = P ( A ) + P ( B ) - P ( A ∩ B ) ,证明如下: 我们在古典概型的情况下推导概率的一般加法公式. 设 A , B 是 Ω 的两个事件. 容易看出, A ∪ B 中基本事件的个数等于 A 中基本事件的个数加上 B 中基本事件的个数减去 A ∩ B 中基本事件的个数. 本课时栏目开关 填一填 研一研 练一练 所以 P ( A ∪ B ) = A ∪ B 中包含的基本事件数Ω 的基本事件。高中数学人教b版必修3322
相关推荐
数 , 等于已知函数对中间变量的导数 , 乘以中间变量对自变量的导数 . 设 y = 8sin 3 x ,求曲线在点 Pπ6 , 1 处的切线方程. [ 解析 ] y ′ = ( 8sin3x ) ′ = 8( s in3x ) ′ = 24sin2x ( sin x ) ′ = 24sin2x c os x , ∴ 曲线在点 Pπ6, 1 处的切线的斜率 k = =
( x ) 在 (1 ,+ ∞ ) 上是增函数. 又 f ( 1) = 1 - ln2 1 - lne = 0 ,即 f ( 1) 0 ,所以f ( x ) 0( x 1) ,即 x ln(1 + x )( x 1) . [例 4] 已知向量 a= (x2, x+ 1), b= (1- x, t), 若函数f(x)= ab在区间 (- 1,1)上是增函数 , 求 t的取值范围 . [分析 ]
8 - 4 a ( 0 a ≤ 2 )0 ( 2 a 3 ), [点评 ] 参数对最值的影响 由于参数的取值范围不同会导致函数在所给区间上的单调性的变化,从而导致最值的变化. 参数的分类标准 可以从导函数值为零时自变量的大小或通过比较函数值的大小等方面进行参数分界的确定. 常见结论 (1)当 f(x)的图象连续不断且在 [a, b]上单调时,其最大值、最小值在端点处取得.
的平均变化率,并计算当 x 0 = 1 , Δ x =12时平均变化率的值. [点评 ] 此类题易错之处容易将平均变化率与平均数相混淆,关键是理解平均变化率的概念. [ 解析 ] 当自变量从 x0变化到 x0+ Δ x 时,函数的平均变化率为f ( x0+ Δ x ) - f ( x0)Δ x=( x0+ Δ x )3- x30Δ x= 3 x20+ 3 x0Δ x +(Δ x )2 当 x0=
求切线的斜率 f′(x0); ④ 由斜率间的关系列出关于 x0的方程 , 解方程求 x0; ⑤ 由于点 (x0, y0)在曲线 y= f(x)上 , 将 x0代入求 y0, 得切点坐标 . [ 解析 ] 设 y = f ( x ) ,则 f′ ( x ) = li mΔ x → 0 f ( x + Δ x ) - f ( x )Δ x = li mΔ x → 0 ( x + Δ x )2-
,外接圆半径为 5. 法二: ∵ kAB=4 - 31 + 2=13, kAC=4 + 51 - 4=- 3 , ∴ kAB kAC=- 1 , ∴ AB ⊥ AC . ∴△ ABC 是以角 A 为直角的直角三角形, ∴ 外心是线段 BC 的中点, 坐标为 (1 ,- 1) , r =12| BC |= 5. ∴ 外接圆方程为 ( x - 1)2+ ( y + 1)2= 25. [ 类题通法 ]