高中数学北师大版选修2-2【配套备课资源】第1章3内容摘要:
不成立 ,故直线 b 与平面 α 必相交. 本课时栏目开关 填一填 研一研 练一练 研一研 问题探究、课堂更高效 探究点三 用反证法证明否定性命题 例 2 求证: 1,2 , 5 不可能是一个等差数列中的三项. 证明 假设 1,2 , 5 是公差为 d 的等差数列的第 p , q , r 项,则 2 - 1 = ( q - p ) d , 5 - 1 = ( r - p ) d ,于是15 - 1=q - pr - p. 因为 p , q , r 均为整数,所以等式右边是有理数,而等式左边是无理数,二者不可能相等,推出矛盾,所以 1,2 , 5 不 可能是一个等差数列中的三项. 小结 当结论中含有 “ 不 ” 、 “ 不是、 “ 不可能 ” 、 “ 不存在 ” 等否定形式的命题时,由于此类问题的反面比较具体,适于应用反证法. 本课时栏目开关 填一填 研一研 练一练 研一研 问题探究、课堂更高效 跟踪训练 2 已知三个正数 a , b , c 成等比数列,但不成等差数列,求证: a , b , c 不成等差数列. 证明 假设 a , b , c 成等差数列,则 a + c = 2 b ,即 a + c + 2 ac = 4 b , 而 b 2 = ac ,即 b = ac , ∴ a + c + 2 ac = 4 ac , ∴ ( a - c ) 2 = 0. 即 a = c , 从而 a = b = c ,与 a , b , c 不成等差数列矛盾, 故 a , b , c 不成等差数列. 本课时栏目开关 填一填 研一研 练一练 研一研 问题探究、课堂更高效 探究点四 用反证法证明 “ 至多 ” 、 “ 至少 ”“ 唯一 ” 型命题 例 3 若函数 f ( x ) 在区间 [ a , b ] 上是增函数,那么方程 f ( x ) = 0 在区间 [ a , b ] 上至多 有一个实根. 证明 假设方程 f ( x ) = 0 在区间 [ a , b ] 上至少有两个实根,设 α 、β 为其中的两个实根.因为 α ≠ β ,不妨设 α β ,又因为函数 f ( x )在 [ a , b ] 上是增函数,所以 f ( α ) f ( β ) .这与假设 f ( α ) = 0 = f ( β )。高中数学北师大版选修2-2【配套备课资源】第1章3
相关推荐
由上述问题 1 , 2 , 你能归纳猜想出一般结论吗。 答 分步计数原理:完成一件事需要两个步骤,做第 1 步有m 种不同的方法,做第 2 步有 n 种不同的方法,那么完成这件事共有 N = m n 种不同的方法. 问题 4 分步计数原理中的 “ 各步方法 ” 与 “ 完成这件事 ” 有什么关系。 答 要完成这 件事 , “ 各步 ” 中的方法必须依次都完成 , 步与步之间是连续的 ,
关 画一画 研一研 例 2 用综合法和分析法证明 . 已知 α ∈ (0 , π) ,求证: 2 s in 2 α ≤s in α1 - c o s α. 章末复习课 证明 ( 分析法 ) 要证明 2 s in 2 α ≤s i n α1 - c o s α成立 . 只要证明 4 s in α c o s α ≤s i n α1 - c o s α. ∵ α ∈ (0 , π) , ∴ s i
= 3 + a i 知 z 对应的点在直线 x = 3 上, 本课时栏目开关 填一填 研一研 练一练 167。 所以线段 AB ( 除去端点 ) 为动点 Z 的集合 . 由图可知:- 7 a 7 . 小结 利用模的定义将复数模的条件 转化为其实虚部满足 的条件,是一种复数 问题 实数化思想;利用复数模的意义,结合图形,可利用平面几何知识 解答 本题 . 本课时栏目开关 填一填 研一研 练一练
∈ R). [思路点拨 ] 利用复数加减运算的法则计算. [精解详析 ] (1)(1+ 2i)+ (3- 4i)- (5+ 6i) = (4- 2i)- (5+ 6i)=- 1- 8i. (2)5i- [(3+ 4i)- (- 1+ 3i)]= 5i- (4+ i)=- 4+ 4i. (3)(a+ bi)- (2a- 3bi)- 3i= (a- 2a)+ [b- (- 3b)- 3]i=- a+
为面 BB1C1C 的法向量,1AC= ( 3 , 1 ,- 2) , ∴ sin θ = | c os 〈1AO,1AC〉 |=1AO1AC| 1AO||1AC| =33 3 + 1 + 4=64. 答案:64 3. 已知三棱锥 P - AB C 中, PA ⊥ 平面 AB C , AB ⊥ AC , PA = AC =12AB , N 为 AB 上一 点, AB = 4 AN ,
a , b 〉=a b|a||b|=66 8=32, ∴ 〈 a , b 〉=π6即为两直线的夹角. 1.已知直线 l1的一个方向向量为 a= (1,- 2,1),直线 l2的 一个方向向量为 b= (2,- 2,0),则两直线的夹角为________. 答案:π6 解: 法一: 以 A 点为坐标原点,建立直角坐标系如右图所示,设 B ( 1, 0,0) ,则 C ( 1,1,0) ,A1( 0