112程序框图2必修3内容摘要:
程序框图 如图 开始 i=1 sum=0 i=i+1 sum=sum+1 i≤100? 输出 sum 结束 否 是 例 2 用二分法求解方程 求关于 x的方程 x2- 2= 0的根,精确到 算法描述 第一步 令 f(x)=x22,以为 f(1)0, f(2)0,所以设 x1=1, x2=2 第二步 令 m=(x1+x2)/2,判断 f(m)是否为 0,若是,则 m为所求,否则,则继续判断 f(x1)f(m)大于 0还是小于 0。 第三步 若 f(x1)f(m) 0则令 x1=m,否则 x2=m。 第四步 判断 |x1x2|。 若是则 x x2之间人任意值均为满足。112程序框图2必修3
相关推荐
为了研究 3月下旬的平均气温 (x)与 4月 20日前棉花害 虫化蛹高峰日 (y)的关系 , 某地区观察了 2020年至 2020年的 情况 , 得到了下面的数据: 【 训练 1】 年份 2020 2020 2020 2020 2020 2020 x/℃ y/日 19 6 1 10 1 8 (1)对变量 x, y进行相关性检验; (2)据气象预测,该地区在 2020年 3月下旬平均气温为 27
算运动员在 2s到 2+⊿ t s(t∈ [2,2+⊿ t])内的平均速度。 时间区间 △ t 平均速度 [2, ] [2,] [2,] [2,] [2,] [2,] 当△ t→0 时, v该常数可作为运动员在 2s时的 瞬时速度。 即 t=2s时, 高度对于时间的瞬时变化率。 设物体作直线运动所经过的路程为 s=f(t)。 以 t0为起始时刻 , 物体在 t时间内的平均速度为
的数值不同的实际意义是什么。 从第 6个月到第 12个月,婴儿体重的平均变化率为 03=( kg/月) 612[数学运用 ] 3cm[练习 1] 如图,水经过虹吸管从容器甲流向容器乙, t s后容器甲中水的体积 V(t)= 5 (单位: ),试计算第一个 10s内 V的平均变化率。 解:在第一个 10秒内 , 体积V的平均变化率为 10 010)0()10(
随机性的两 个变量之间的关系叫做相关关系 B. 在平面直角坐标系中用描点的方法得到表示具有相关 关系的两个量的一组数据的图形叫做散点图 C. 线性回归方程最能代表具有线性相关关系的 x, y之间的 关系 D. 任何一组观测值都能得到具有代表意义的线性回归方 程 解析 只有对两个变量具有线性相关性作出判断时 , 利用 最小二乘法求出线性方程才有意义 . 答案 D 题型二 求线性回归方程 【 例
少量 可溶于水 蒸发 • 物质从液体转化为气体的过程叫蒸发 • 根据混合物中溶质和溶剂的沸点不同,将混合物加热使溶质与溶剂分离 • 水 变成水蒸气 • 食盐水 • (混合物 ) 得到 NaCl固体 蒸发 (加热 ) 实验 11 粗盐的提纯 • 药品:粗盐、水 • 仪器:托盘天平、药匙、烧杯 (1小 1大 ) (秤量 ) • 玻棒 (溶解 ) • 漏斗、滤纸、铁架台 (过滤 ) • 酒精灯 (蒸发