语文版中职数学拓展模块33古典概率2内容摘要:
生的 概率 ,记做 nmn m nmP(A)= 例 1 先后抛掷两枚均匀的硬币,计算: ⑴ 两枚都出现的正面概率; ⑵ 一枚出现正面、一面出现反面的概率。 解: 由分步计数原理,先后抛掷两枚硬币可能出现的结果共有 2 2=4(种),且这 4种结果出现的可能性都相等: 正正 正反 反正 反反 ⑵ 记 “ 抛掷两枚硬币,一枚出现正面、一枚出现反面 ” 为事件 B,那么事件 B包含的结果有 2种。 因此。 P(B) = =42答: 正面都出现的概率是。 41⑴ 记 “ 抛掷两枚硬币,都出现正面 ” 为事件 A,那么在上面 4种结果中,事件 A包含的结果有 1种,因此 P(A) =。 4121 答: 一枚出现正面、一枚出现反面的概率是。 21想一想: 如果说,先后抛掷两枚硬币,共出现 “ 两正 ” 、 “ 两反 ” 、 “ 一正一反 ” 等 3种结果,因此上面例题中两问结果都应该是 ,而不是 和 ,这种说法错在 哪里。 31 41 21答 : 基 本事件是不能再分解为更简单事件的事件,事件“一正一反”还可以分解为“正、反”、“反、正”两个简单事件,上述说法错在对古典概率和基本事件概念不清。 例 2 盒中装有 3个外。语文版中职数学拓展模块33古典概率2
相关推荐
《 详解九章算法 》 中列出的图表. 动脑思考 探索新知 可以看出二项式系数具有下列性质: ( 1)每一行的两端都是 1,其余每个数都是它“肩上”两个数的和; ( 2)每一行中与首末两端“等距离”的两个数相等; ( 3)如果二项式 ()nab 的幂指数 n是偶数,那么它的展开式中间 一项的二项式系数最大;如果 n是奇数,那么二项展开式中间两项的 二项式系数最大并且相等. 巩固知识 典型例题 例
, 尚不能拒绝 H0,据此样本尚不能认为该地新生儿染色体异常率低于一般新生儿。 )1()0()1( XPXPXP )()(!1400!1!400)( 399400 0 9 0 )1( XP样本率与总体率的比较的 u检验 npu)1( 0001 例 根据以往经验,一般胃溃疡患者有 20%发生胃出血症状。 现某医院观察
X~b(n,p) }{ kXP 1 0 1, , ,n nkkkp p k n ( 2) )()()2( 223 CXP例 4 已知 100个产品中有 5个次品,现从中 有放回 地取 3次,每次任取 1个,求在所取的 3个中恰有 2个次品的概率 . 解 : 因为这是有放回地取 3次,因此这 3 次试验 的条件完全相同且独立,它是贝努里试验 . 依题意
都属于两点分布 . 说明 200件产品中 ,有 190件合格品 ,10件不合格品 ,现从中随机抽取一件 ,那么 ,若规定 ,0,1X 取得不合格品 , 取得合格品 . 则随机变量 X 服从 (0 —1)分布 . Xkp0 120019020010实例 “抛硬币”试验 ,观察正、反两面情况 . 随机变量 X 服从 (0—1) 分布 . ,1)(XX ,0 ,正面当
nnCCCP2242422232 rnrnCCP224 练习:从 6双不同的手套中任取 4只,求其中恰有一双配对的概率。 3316241222516 CCCP 几何概型 在古典概型中利用等可能性的概念,成功地计算了某一类问题的概率,但是古典概型是在假设试验的基本事件有限个的情形下给出的,显然不适用于试验的基本事件为无穷多个的情形。 这类问题一般可以通过几何方法来求解。
00 ( , ) !( ) !P n r nrr r n r = =环 形 排 列 数 r排列 从集合 S的 n个元素中选出 r个 ,把它们排成 1个圆圈(考虑顺序),称为一个环形 r排列。 ( , ) ( 1 ) !P n nnnn = = 环 形 排 列 数定理 证明: r个 r线性排列对应 1个 r环形排列 . 例 5 将 12种记号标在旋转的圆鼓上,有多少种标法。 n=P(12