语文版中职数学拓展模块23抛物线的标准方程和性质2内容摘要:
K x o y 22 p2 p xy 22 p2 p xy 抛物线的定义 在平面内 ,与一个 定点 F和一条 定直线 l (l不经过点 F ) 的 距离相等 的点的轨迹叫 抛物线 . 准线 M F l dMF 焦点 F ( ) 02p,. y2 = 2px( p> 0) 抛物线的标准方程 x o p 2px y lx y l o F x y o l F x y l o F x y l o F 方案三 方案二 方案一 方案四 y2=2px (p0) x2=2py (p0) 准线方程 焦点坐标 标准方程 图 形 x F O y l x F O y l x F O y l x F O y l y2=2px (p0) )0,2p( 2px )0,2p( 2px )2p0( , 2py x2=2py (p0) )2p0( , 2py P的意义 :抛物线的焦点到准线的距离 . 方程的特点 : (1)左边 是二次。语文版中职数学拓展模块23抛物线的标准方程和性质2
相关推荐
2222 ≥ ≤y a y a x R,或关于 x轴、 y轴、原点对称 ( 1 )ceea渐近线 ayxb. . y B2 A1 A2 B1 x O F2 F1 x B1 y O . F2 F1 B2 A1 A2 . F1(c,0) F2(c,0) F2(0,c) F1(0,c) ≥ ≤x a x a y R,或 ( 1 )ceeabyxa课外思考 : 1. 双曲线
a42a2cx+c2x2=a2x22a2cx+a2c2+a2y2 即: (a2c2)x2+a2y2=a2(a2c2) 因为 2a2c,即 ac,所以a2c20,令 a2c2=b2,其中b0,代入上式可得: 12222 byax2222 )(2)( ycxaycx 所以2222222 )()(44)(: ycxycxaaycx 两边平方得222 )(:
先观察 y=sin2x、 y=sin x与 y=sinx的图象间的关系 ω的作用:研究 y=sinωx与 y=sinx 图象的关系 21 x 0 2 x 0 2 3 4 sin x 0 1 0 1 0 2 232121作 y=sin x的图象 21y 0 x π 2π 3π 4π 1 1 ω的作用:使正弦函数的周期发生变化。 y=sinω x( ω 0, ω
、求下列抛物线的焦点坐标和准线方程: (1)y2 = 20x (2)x2= y (3) (4)x2 +8y =0 12焦点坐标 准线方程 (1) (2) (3) (4) ( 5, 0) x=5 ( 0, — ) 1 8 y= — 1 8 ( 0, 2) y=2 26yx10,24124y例 2:一种卫星接收天线的轴截面如下图所示。
osx 30222 0 1 2 1 0变式 y=1cosx, x∈ [0, 2π]的简图 . 1.“五点法”是作三角函数图象的常用方法, “ 五点”即函数图象最高点、最低点、与 x轴 的交点. 2.列表、描点、连线是“五点法”作图 过程中的三个基本环节,注意用光滑 的曲线连接五个关键点. 【解】 按五个关键点列表: x 0 π2 π 3π2 2π 2s i n x 0 2 0 - 2 0
23 2● ● ● ● ● 1 1 例:画出下列函数的简图 (1)y=1+sinx, x [0, ] (2)y= cosx, x [0, ] 22解: (1)按五个关键点列表 x sinx 1+sinx 0 2 23 20 1 0 1 0 1 2 1 0 1 o x y 1 2 2 23 2● ● ● ● ● y=1+sinx x [0, ] 2