语文版中职数学基础模块上册62平面向量的运算1内容摘要:
而向量共线的等价条三、理解定理,初步应用: . , )2,(),1(.1xxbxa求共线且方向相同与若向量例 三、理解定理,初步应用: 练习: 与若向量已知点BABaABA,132||,3)( 2 ,2 ) ,( 1 , .: ),5,2(),3,1(),1,1(.2三点共线、求证已知例CBACBA ?, ),10(),5,4(),12,( 三点共线、为何值时当设向量CBAkkOCOBk。语文版中职数学基础模块上册62平面向量的运算1
相关推荐
交换律: abba 结合律: )()( cbacba 想一想 ,则它们的和是多少 ? 0 aaaa )()(aaa 00 的和是多少 ? a ________)1( BCCDAB )4( )3( )2( )1(edcdbadcba1 .化简 ________)2( CBACBNMA _ _ _ _
212211yxayyxxbayyxxbayxbyxa 则:向量的坐标运算 ( 2 , 1 ) , ( 3 , 4 ) , , , 3 4aba a b a b a b 练 习 , 已 知求 2 的 坐 标。 ( 2 , 1 ) ( 3 , 4) 1 5( 2 , 1 ) ( 3 , 4) 5 33 4 3 ( 2 , 1 )4,4( 3 ,
22| || | 222 .abab解 cosa,b= 由于 0≤ a,b≤180 176。 , 所以 a,b= 135.运用知识 强化练习 14.3.1. 已知 |a|= 7,|b|= 4, a和 b的夹角为 60176。 ,求 ab. 2. 已知 aa= 9,求 |a|. 3. 已知 |a|= 2,|b|= 3, a,b= 30176。 ,求 (2a+ b)b . 6 3
0 1 0 24 22343y 0 x π 2π 3π 4π 1 1 列表 描点 连线 先观察 y=sin2x、 y=sin x与 y=sinx的图象间的关系 ω的作用:研究 y=sinωx与 y=sinx 图象的关系 21 x 0 2 x 0 2 3 4 sin x 0 1 0 1 0 2 232121作 y=sin x的图象 21y 0 x π 2π 3π
a = b , 则 a = b。 ( 2 )若 两 个 向 量 相 等 , 则 它 们 的 起 点 相 同 , 终 点 相 同 ;( 3 ) 若 A B = C D , 则 四 边 形 A B C D 是 平 行 四 边 形 ;( 4 ) 若 a = b , b = c , 则 a = c。 ( 5 )若 a / / c , b / / c , 则 a / / b1OA OB OCB
1 即可以写成,点坐标可以表示为用,由勾股定理得,且三者构成直角三角形,半径,余弦线的正弦线角POPOPOMMP平方关系 sin,cos 的三角函数的定义 ,s in y ,c o s x )0(,t a n xxy t a nc oss i n 商的关系 有什么样的关系呢。 、 t a nc o ss i n思考: c o ssi