苏教版高中数学必修532一元二次不等式之一内容摘要:
解 :原不等式化为 4x2+x- 10, 因为△ =12- 4 4 (- 1)0, 方程 4x2+x- 1=0的根是 121 1 7 1 1 7,88xx 所以不等式的解集是 1 1 7 1 1 7{ | }88xx 例 1:解不等式 5x2- 10x+0 解 :解方程 5x2- 10x+=0得: x1=,x2= 作出函数 y=5x2- 10x+ 如图所示。 x y 0 所以不等式 5x2- 10x+0的解集为: } . 8x{ 例 3.解不等式 x2+4x+40. 解:因为△ =42- 4 1 4=0, 原不等式化为 (x+2)20, 所以不等式的解集是 {x∈ R| x≠ - 2}. 例 4.解不等式- 2x2+4x- 30. 解:原不等式化为 2x2- 4x+30, 因为 2x2- 4x+3=2(x- 1)2+10, 所以原不等式的解集是 例 5.求函数 的定义域。 22 3( ) 2 3 l o g ( 3 2 )f x x x x x 解:由函数 f。苏教版高中数学必修532一元二次不等式之一
相关推荐
( 2) x22x+1 0; ( 3) x2x+2 0. 研究 上述不等式的解集与对应一元二次方 程的判别式之间有什么关系。 并根据 研究结果完成下表 . 观察 (1){x|1/2x或 x2} (2) ﹛ x|x≠1﹜ (3) R ⊿ 0 ⊿ =0 ⊿ 0 问题探究三: x1 x2 ⊿ =b24ac 二次函数 y=ax2+bx+c(a0) 的图象 方程x2+bx+c=0 的根
分析: ( , ) , ( 1 , 1 )xy 方法:数形结合 ( 1,1)P 的几何意义: 表示过 直线斜率 ]1[1,3例 4 xy01 (2, 2)例 若 , 则目标函数 的取值 范围是 222xyxy ≤≤≥2z x y0l1l2lxy22o解:先画二元一次不等式组表示的平面区域 变形: 22xzy 2z要求 yzm a x m in6 ,
”型 “ p且 q”型 “ 非 p”型复合命题 3 : p : 5 ≤ 5 q : 27不是质数 1 : p : 3是有理数。 q : 3是无理数 2 : p : 方程 x2+x1=0的两根符号不同 q : 方程 x2+x1=0的两根绝对值不同 注意: 构成 复合命题 的两个 简单命题 之间 不一定有 关联 返回 主页 例三: 分别指出下列复合命题的形式 及构成它的简单命题。 3。
____ ( 3)若 a7a12=5,则 a8a9a10a11=_________ 36 6 64或 1 25 注意:等比数列的奇(或偶)数项 同号 ( 4)已知{ an}是等比数列, an> 0且a2a4+2a3a5+a4a6=25,那么 a3+a5的值等于( ) 解: ∵ 是等比数列 , na252,0 645342 aaaaaaa n252 255323
关系式 a=bsinA bsinAab ab 解的个数 一解 两解 一解 一解 无解 ababA B C b a A B B C 1 2A B C C B A 已知两边和一边的对角,三角形解得一般情况。 上表中 A为锐角时, sina b AA为直角时, ,a b a b 均无解。 时,无解; 例 3. 在 中 ,已知 ,判定 的形状。 ABC 22( ) si n( )a b A
=15176。 , ∠ A=180176。 - 15176。 - ∠ Q=165176。 - ∠ Q, 由正弦定理,得方程组: 300 120si n si n 1520 120si n si n 15QxA ① ② P 6045A Q 由①得 3 0 0 si n 1 5si n 0 .6 4 7 0120Q 所以 ∠ Q≈176。 (不合题意舍去 ), ∠