苏教版高中数学必修512余弦定理之二内容摘要:
A2c os222 ,cabacB2c os222 。 abcbaC2c os222 注意 :余弦定理适用任何三角形 . 余弦定理的作用: ( 1)已知三边,求三个角; ( 3)判断三角形的形状。 ( 2)已知两边和它们的夹角,求 第三边和其它两角; ( 1)已知 求 a 3 , 1 , 60 ,b c A (2)已知 a=4,b=5,c=6,求 A (精确到 ) 例 1:在 ABC中, 解:( 1)由余弦定理得 2 2 2222 c o s3 1 2 3 1 c o s 6 0 7a b c b c A 7a( 2)由余弦定理得 2 2 2。苏教版高中数学必修512余弦定理之二
相关推荐
0176。 - 45176。 =15176。 , ∠ A=180176。 - 15176。 - ∠ Q=165176。 - ∠ Q, 由正弦定理,得方程组: 300 120si n si n 1520 120si n si n 15QxA 6045A Q P ① ② 由①得 3 0 0 si n 1 5si n 0 .6 4 7 0120Q 所以 ∠ Q≈176。
=15176。 , ∠ A=180176。 - 15176。 - ∠ Q=165176。 - ∠ Q, 由正弦定理,得方程组: 300 120si n si n 1520 120si n si n 15QxA ① ② P 6045A Q 由①得 3 0 0 si n 1 5si n 0 .6 4 7 0120Q 所以 ∠ Q≈176。 (不合题意舍去 ), ∠
关系式 a=bsinA bsinAab ab 解的个数 一解 两解 一解 一解 无解 ababA B C b a A B B C 1 2A B C C B A 已知两边和一边的对角,三角形解得一般情况。 上表中 A为锐角时, sina b AA为直角时, ,a b a b 均无解。 时,无解; 例 3. 在 中 ,已知 ,判定 的形状。 ABC 22( ) si n( )a b A
b c Ba b c 已 知 , 在 中 , 根 据 下 列 条 件 , 解 三 角 形( ) ( ) 2 2 22 c o s 2b c aA bc由 余 弦 定 理 , 得 22 22 2 6 2 2 3 22 2 2 6 2 2c o s 3 0 , 4 5 , 1 0 52B A B C
已知 b=3, c=1, A=60176。 ,求 a. 例题讲解 中AB C,bcacbcba 3))(( 求 A. 例题讲解 用余弦定理证明:在 △ ABC中,当 ∠ C为锐角时,a2+ b2
注:三角形中角的正弦值小于1时,角可能有两解 无解 课堂小结 ( 1)三角形常用公式: ( 2)正弦定理应用范围: ① 已知两角和任意边,求其他两边和一角 ② 已知两边和其中一边的对角,求另一边 的对角。 (注意解的情况 ) 正弦定理: A B C 1 1 1si n si n si n2 2 2ABCS a b C b c A a c B sin sin sina b