人教a版必修5解三角形应用内容摘要:
a=2 , b=6, A=30186。 . 2 3 6 3 3 _________________________________ _________________________________ ________________________________ ________________________________ 余弦定理先求出 A,或先求出 B 余弦定理先求出 a 正弦定理先求出 b 正弦定理先求出 B(60o 120o ) 例 1。人教a版必修5解三角形应用
相关推荐
的,因此哪一次打开房门的概率均相等,故 P ( A 1 ) =15. (2 ) 记 “ 三次内打开房门 ” 为事件 A 2 ,它可以分解成三个子事件 B 1 ,B 2 , B 3 ,其中事件 B 1 是第一次就把房门打开,其概率 P ( B 1 ) =15; 事件 B 2 是第二次把房门打开,其概率 P ( B 2 ) =15;事件 B 3 是第三次把房门打开,其概率 P ( B 3 ) =15
典例精析 栏目链接 方法一 (1)利用计算器或计算机产生一组 (共 N个 )0到 1区间的均匀随机数, a1= RAND. (2) 经过伸缩交换, a = a 1 ](4) 计算频率 f n ( A ) =N 1N即为概率 P ( A )的近似值. 方法二 做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3]( 这里 3 和 0 重合 ) .转动圆盘记下指针指在 [ 1 , 2 ] (
时 ymax=1 )(2 Zkkx 时 ymin= 1 )( Zkkx )(2 Zkkx x y o 1 2 3 4 2 1 定义域 值 域 最 值 f(x)= 0 x y o 1 2 3 4 2 1 f(x)=sinx f(x)= cosx 图 象 周期性 奇偶性 单调性 2 2 奇函数 偶函数 )](22
x30 + x= ⇒ x = 30. 答案: 16 或 30 点评: 、中位数、众数在反映样本数据上的特点,并结合实际情况,灵活应用. 2.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中极端数据的信息,帮助我们作出决策. 3.众数、中位数、平均数三者相比较
nkled lots of salt on them so they were__________. The history of chips Did you know were invented 1853 were crispy really salty Make up a short dialogue about the history of potato chips with your
一致吗。 组和组之间的数据一致吗。 为什么出现这样的情况。 掷硬币试验 从这次试验,我们可以得到一些什么启示。 每次试验的结果我们都无法预知,正面朝上的频率要在试验后才能确定。 在相同的条件 S下重复 n次试验,观察某一事件 A是否出现,称 n 次试验中事件 A出现的次数 nA为事件 A出现的频数,称事件 A出现的比例fn(A)=nA/n为事件 A出现的频率。 思考:频率的取值范围是什么。 [0