语文版中职数学基础模块上册63平面向量的坐标表示1内容摘要:
A B B A ;(2) ( 1 , 1 ) , ( 1 , 1 ) A B B A ;(3) ( 4 , 3 ) , ( 4 , 3 ) A B B A .运用知识 强化练习 略 . ABBA,已知 A, B两点坐标,求 的坐标及模. (1) A (5,3), B (3, −1); (2) A (1,2), B (2, 1); (3) A (4,0), B (0, −3). 3. 创设情境 兴趣导入 图 7- 20 观察图 7- 20,向量 (5,3)OA (3, 0)OP ( 8 , 3 )O M O A O P 可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和. 动脑思考 探索新知 11( , )xy ,a 22( , )xyb设平面直角坐标系中, ,则 1 1 2 2( ) ( )x y x y a b i j i j1 2 1 2( ) ( )x x y y ij所以 1 2 1 2( , )x x y y ab( ) 类似可以得到 1 2 1 2( , )x x y y ab( ) 11( , )xy a ( ) 巩固知识 典型例题 例 3 设 a= (1, −2), b= (−2,3),求下列向量的坐标: (1) a+ b , (2) - 3 a, (3) 3 a- 2 b . 解 (1)。语文版中职数学基础模块上册63平面向量的坐标表示1
相关推荐
a baba b a b a ba b a ba b a baba b a b a b a babb a a a (1) 当 时 ,当 时 , ;当 时 ,当 时 , 因 此 ,因 此 对 非 零 向 量 有当 时 有 ,内积的性质 .120,4,51obababa,求的夹角与已知例1012 0c o s45 oc o s||||
0 +15(4 + 4 + 6 + 4 + 7) = 85. 答案: C 2020/12/25 • (2020巢湖质检 )在如图所示的茎叶图中,若甲、乙两组数据的中位数分别为 λ1, λ2,平均数分别为 μ1, μ2,则下列判断正确的是 ( ) 2020/12/25 • λ2, μ1μ2 B. λ1λ2, μ1μ2 • C. λ1λ2, μ1μ2 D. λ1λ2, μ1μ2 • 解析:
规定 与任何向量的内积为 0. 0 已知非零向量 与 , 为两向量的夹角, a b,ab〈 〉=( 1)当 同向时, ab、 abab( 2)当 反向时, ab、 abab( 3)当 时, ab ab 02 0,a a a aaa baba ( 4) 特别地 0 , 0 0 a b a b 命 题正 确 吗。
但是两个向量之间 只有相等关系 ,没有大小之分,“对于向量 a , b , a > b ,或 a < b ”这种说法是错误的 . 3.向量间的关系 平行向量又叫做共线向量 如: a b c (1) 平行向量: 方向 相同 或 相反 的 非零向量 叫做平行向量。 记作 a ∥b ∥c 规定: 0与任一向量平行。 o l . C OC = c A OA = a OB = b B ( 2) 相等向量:
252 11cosyx。 余 弦 曲 线 : 对 称 中 心 对 称 轴 , 0 )2k ( ()x k k Z正弦和余弦函数图像的对称性 函数 y=sinx y=cosx 图形 定义域 值域 最值 单调性 奇偶性 周期 对称性 2 522320 xy21 1 xR xR[ 1,1]y [ 1,1]y 22xk 时, 1m axy
y=sinx (xR) 图象关于 原点 对称 正弦、余弦函数的奇偶性 x 6 o 1 2 3 4 5 2 3 4 1 y cos(x)= cosx (xR) y=cosx (xR) 是 偶函数 正弦、余弦函数的奇偶性 一般的,对于函数 f(x)的定义域内的 任意 一个 x,都有 f(x) = f(x),则称 f(x)为 这一定义域内 的偶函数。 关于 y轴对称