苏教版选修1-1高中数学23抛物线的几何性质1内容摘要:
由抛物线的定义,可知 e=1。 下面请大家得出其余三种标准方程抛物线的几何性质。 (二)归纳:抛物线 的 几何性质 图 形 方程 焦点 准线 范围 顶点 对称轴 e l F y x O l F y x O l F y x O l F y x O y2 = 2px ( p0) y2 = 2px ( p0) x2 = 2py ( p0) x2 = 2py ( p0) )0,2( pF)0,2( pF )2,0( pF)2,0( pF 2px2px 2py 2pyx≥0 y∈ R x≤0 y∈ R y≥0 x∈ R y ≤ 0 x∈ R (0,0) x轴 y轴 1 特点: ,虽然它可以无限延伸 ,但它没有渐近线。 ,没有 对称中心。 、 一个焦点、一条准线。 ,为 1。 思考 :抛物线标准方程中的 p对抛物线开口的影响 . yox)0,2( pFP(x,y) 4321123452 2 4 6 8 10y2= xy2=xy2=2xy2=4x21补充 ( 1)通径: 通过焦点且垂直对称轴的直线, 与抛物线相交于两。苏教版选修1-1高中数学23抛物线的几何性质1
相关推荐
x> 2. 例 1 确定函数 在哪个区间内是 增函数,哪个区间内是减函数。 2( ) 4 3f x x x 四、数学运用 : 解:取 x1x2,x x2∈R , f(x1)- f(x2)=( x12- 4x1+ 3)-( x22- 4x2+ 3) =( x1+x2)(x1- x2) 4(x1- x2) = (x1- x2)(x1+x2- 4) 则当 x1x22时, x1+x2- 40,
x4)x2(k22PQ),(),(解:设 2 x,xQ42P2x2x4xkPQ2QPQ的斜率为则割线.442xf ( x )4k2x2P斜率为)处的切线,在点(从而曲线,无限趋近于常数时,无限趋近于当x,2x Q 令练习 : 试求 f (x)=x2+1在 x=1处的切线斜率 . 2xx Q 则.211xf ( x
件可得点 A的坐标是( 40, 30),代入方程可得 230 2 40p2 2 ( 0 )y p x p454p所求的标准方程为 焦点坐标为 2 252yx45( , 0)8.0222正三角形的边长)上,求这个(两个顶点在抛物线位于坐标原点,另外、正三角形的一个顶点例 ppxyy O x B A 分析 :观察图 ,正三角形及抛物线都是轴 对称图形 ,如果能证明
三角形,则其离心率为。 若椭圆的 的两个焦点把长轴分成三等分,则其离心率为。 222131若椭圆 + =1的离心率为 ,则: k=_____ 82kx92y若某个椭圆的长轴、短轴、焦距依次成等差数列, 则其离心率 e=__________ 445 或5322221111yxabPPP O PPFPFPF
(3) 两个焦点的坐标是( 0 , 2)和( 0 , 2),并且经 过点 P( , ) . 解 : 因为椭圆的焦点在 y轴上, 设它的标准方程为 )0(12222 babxay∵ c=2,且 c2= a2 b2 ∴ 4= a2 b2 …… ① 又 ∵ 椭圆经过点 2523,∴ …… ② 1)()( 22232225 ba联立①②可求得: 6,10 22
22 yx yyxx2//22 yx 因为 =4 所以 44 22 yx即 1422 yx1)将圆按照某个方向均匀地压缩(拉长),可以得到椭圆。 2)利用中间变量求点的轨迹方程 的方法是解析几何中常用的方法; (x,y) ),( yx 练习 1 椭圆 上一点 P到一个焦点的距离为 5, 则 P到另一个焦点的距离为( ) 192522 yx 的焦点坐标是( )