济源三中选修1-123双曲线(双曲线几何性质)内容摘要:
25=1 解答:( 1) a=4,b=2,A1(4,0),A2(4,0) ( 2) a=5,b=7,A1(0,5),A2(0,5) 请思考: 如若求半焦距长和离心率呢。 小结:关键在于求 实半轴 a的长和虚半轴 b的长,然后代入关系式 c2=a2+b e=c/a求半焦距 c的长及离心率 . 七、让我们继续研究 • 请观察双曲线的图象和矩形对角线 ,有何特征。 双曲线 x2/a2y2/b2=1(a0、 b0)的各支向外延伸时,与矩形的两条对角线所在的直线逐渐接近 . 请思考:结论正确吗 ? F2 y B1 A2 A1 B2 0 x F1 • (一)、我们共同来设计一个方案: 八、我们一起来证明 由双曲线的对称性我们只需研究第一象限的情形; 如何说明 双曲线 x2/a2y2/b2=1在第一象限内与矩形的对角线所在的直线逐渐接近且不相交呢。 M(x,y) Q ( 2)如何 说明 |MQ|逐渐减小且不等于 0呢。 0 x y b a L N(x,Y) ( 3)如何证明 |MN|逐渐减小且不等于 0呢。 我们可用方程的思想解决: |MN|=Y y,求出 M、 N点坐标即可 . 为此我们过点 M作一条直线 L与 y轴平行,交矩形对角线与 N点,坐标记为 N( x , Y) .我们需证明 N点在 M点上方,即证 y < |MQ| < |MN| ,所只需证明 |MN|逐渐减小且不等于 0即可 . ( 1)我们在第一象限内双曲线图象上任取一点 M( x, y ),过M点向矩形的对角线 y=bx/a引垂线,垂足为 Q点。 我们只需说明 |MQ|逐渐减小且不等于 0即可 . a)(xaxaby 22 xabY 22 axaby 2xa1xab xabY( 二)、我们来证明 先取双曲线在第一象限内的部分进行证明这一部分的方程可写为 0 x y N(x,Y) Q M(x,y) yYMN )ax(xab 22 )ax(x)ax)(xax(xab222222)ax(xab22 在该式子中 x (x≥a)逐渐增大时, |MN|逐渐减小且不等于 0. 又 |MQ| < |MN|,所以 |MQ。济源三中选修1-123双曲线(双曲线几何性质)
相关推荐
作家的读书方法 , 才有益处可言。 1 视读书为责任或义务的见解是荒谬的事情。 1 读书没有合宜的时间地点。 1 读书的真艺术:有那种心情的时候便拿起书来读。 14— 1 李清照的读书乐趣。 基本思路 文章内容大概 文章是从读书的益处 、 目的 、 书的选择 、 作家的选择 、 读书的时间和地点等方面 , 来阐述自己关于读书的观点: 读书是以使人得到一种优雅和风味为目的。
致 (ATP)生成不足,所以能量供应不足的疾病 其中的一种为线粒体肌病, 主要症状是肌肉无力、肌肉萎缩以及运动不耐受 2 ATP在细胞内的含量及其生成( )。 ,很快 ,很慢 ,很慢 ,很快 练一练 1. ATP转化为 ADP 可表示如下:式中 X代表( ) A、 H2O B、 [H] C、 P D、 Pi D D 草履虫的纤毛运动和变形虫的变形运动,都是肌动蛋白利用ATP提供的能量完成的
( 微米 ) 较大 ( 10 30 微米 ) 无成形的细胞核,无核膜,无核仁 有成形的真正的细胞核,有核膜、核仁 有核糖体 有核糖体、线粒体等,植物细胞还有叶绿体和液泡等 细菌、蓝藻 真菌、植物、动物 无,只有一条 DNA,与蛋白质不结合在一起 有, DNA与蛋白质结合在一起 原核细胞和真核细胞 根本区别:有无成形的细胞核 拟核:无核膜包被,无核仁、无染色体,只有 DNA分子 共性
为何发光—自然 理解毕达哥拉斯的力量—社会 一些国家关于知识的名言 知识比金钱宝贵,比刀剑锋利,比枪炮威力大 —— 俄罗斯 知识上的“聋”,会导致精神上的“哑” —— 丹麦 知识的用处就是夜行人的火把 —— 沙特阿拉伯 知识可羡,胜于财富 —— 英国 知识能使你增加一双眼睛 —— 叙利亚
顺序 方案 1:辅导点评到自主点评 ◎ 漂泊的旅人 《 想北平 》《 我心归去 》 《 乡土情结 》 ◎ 乡关何处 《 前方 》《 今生今世的证据 》 方案 2: 不同审美角度 情意: 《 想北平 》 、 《 乡土情结 》 哲意: 《 前方 》 、 《 我心归去 》 、 《 今生今世的证据 》 方案 3 整合比较 平民意识,大地情怀 —— 《 想北平 》 、 《 今生今世的证据 》 “在路上 ”