新课标人教版3-3选修三91固体1内容摘要:
:熔化了的石蜡在云母片上呈椭圆形,而在玻璃片上呈圆形. 结论 :云母晶体在各个方向上的导热性能不同,而非晶体玻璃在各个方向上的导热性能相同. 一种物质可能以晶体和非晶体两种不同的形态出现,也就是一种物质是晶体还是非晶体,并不是绝对的. 例如,天然水晶是晶体,而熔化以后再凝结的水晶(即石英玻璃)就是非晶体. 许多非晶体在一定的条件下可以转化为晶体. 人们在研究中还发现,在冷却得足够快和冷却到足够低的温度时,几乎所有的材料都能成为非晶体. 二 .单晶体和多晶体 . 一个物体就是一个完整的晶体,例如雪花、食盐小颗粒等.这样的晶体就叫做 单晶体 . 制造各种晶体管集成电路只能用单晶体 (单晶硅或单晶锗 ). 组成的,这样的物体就叫做 多晶体 . 由许多食盐单晶体粘在一起而成大块的食盐,就是多晶体.其中的小晶体叫做晶粒. 各种金。新课标人教版3-3选修三91固体1
相关推荐
体是一个完整的晶体 ,具有规则形状 , 多晶体是由许多单晶体杂乱无章地组合而成的 , 无确定的形状 . • ② 从物理性质上:单晶体表现为各向异性 ,多晶体表现为各向同性 . • ③ 单晶体和多晶体都有一定熔点 . • (5)多晶体和非晶体比较 • ① 多晶体和非晶体都没有规则的几何形状 . • ② 多晶体和非晶体的一些物理性质都表现为各向同性 . • ③ 多晶体有一定的熔点 ,
一定的,当体积增大时,分子密度减小 . 三 .用气体分子动理论解释实验三定律 一定质量( m)的理想气体,其分子总数( N)是一个定值,当温度( T)保持不变时,则分子的平均速率( v)也保持不变,当其体积( V)增大几倍时,则单位体积内的分子数( n)变为原来的几分之一,因此气体的压强也减为原来的几分之一;反之若体积减小为原来的几分之一,则压强增大几倍,即压强与体积成反比。 这就是玻意耳定律。
粒、单晶硅、单晶锗等. 2.多晶体: 如果整个物体是由许多杂乱无章地排列着的小晶体组成的,这 样的物体叫做多晶体.其中的小晶体叫做晶粒. 常见的金属就是 多晶体 ( 1)多晶体没有规则的几何形状. ( 2)多晶体 ① 没有规则的几何形状,在物理性质上 不具备 各向异性(同非晶体) (但每一晶粒内部都是各向异性的). ②有确定的熔点. 多晶体的 特性: 3.多晶体和非晶体 比较 (
强( p)也增大;反之当温度( T)降低时,气体压强( p)也减小。 吕萨克定律 一定质量( m)的理想气体的总分子数( N)是一定的,要保持压强( p)不变,当温度( T)升高时,全体分子运动的平均速率 v会增加,那么单位体积内的分子数( n)一定要减小(否则压强不可能不变),因此气体体积( V)一定增大;反之当温度降低时,同理可推出气体体积一定减小。 例 ,下列四个论述中正确的是 ( )
分子作用在器壁单位面积上的。 作用力 影响气体压强的两个因素 ( 1)气体分子的。 气体的温度高,气体分子的平均动能就大,每个气体分子与器壁碰撞给器壁的冲力就大。 ( 2)气体分子的 ,即气体分子数密度。 气体分子密度大,单位时间内与单位面积器壁碰撞的分子数就多。 密集程度 平均动能 气体对容器的压强是大量气体分子频繁的对容器的碰撞而产生的。 其大小跟两个因素有关:一是气体分子的平均动能
0K ;末状态 p 2 = 20 at m , V 2 =。 T 2 = 293K ,根据p 1 V 1T 1=p 2 V 2T 2得, V2=p1V1T2p2T1=30 100 29320 300L = L . 用掉的占原有的百分比为 V2- V1V2=1 - 100= % 方法二:取剩下的气体为研究对象 初状态: p1= 30atm ,体积 V1=。 T1= 300K 末状态: p2=