新人教b版高中数学选修1-1222双曲线的几何性质内容摘要:
开口有影响,有了渐近线就能更精确的绘制双曲线的图形,应该如何绘制呢。 渐近线方程: xaby Y X F1 F2 A1 A2 B1 B2 12222 byax焦点在 x轴上的双曲线草图画法 焦点在 y轴上的双曲线的几何性质 标准方程: 12222bxay几何性质: 范围: y≥a或 y≤a 对称性: 关于 x轴, y轴,原点对称。 顶点: B1( 0, a), B2( 0, a) 实轴 B1B2长 2a。 虚轴 A1A2长 2b. 渐近线方程: xbay o Y X A1 A2 B1 B2 F2 F2 ace 离心率: 轴 : 例题 1:求双曲线 144169 22 xy 的实半轴长 ,虚半轴长 , 焦点坐。新人教b版高中数学选修1-1222双曲线的几何性质
相关推荐
是 y o x L F K 抛物线标准方程的推导过程: 焦点到准线的距离(焦参数) . 在抛物线上。 成立,即点),那么适合方程((的坐标);可以证明,如果点都适合方程(的坐标(物线上任意一点)的过程可以看出,抛从以上求解方程(MMF1),M1),M1dyxyx所以方程 例 1.( 1)已知抛物线的焦点是 F(3,0),写出它的标准方程 和准线方程。 .3,12.6,32,0312
方案 (2) ﹒ y x o 方案 (3) ﹒ y x o 方案 (4) 焦点到准线的距离 2020/12/25 y2=2px (p0) x2=2py (p0) 准线方程 焦点坐标 标准方程 图 形 x F O y l x F O y l x F O y l x F O y l y2=2px (p0) )0,2p( 2px )0,2p( 2px )2p0( , 2py x2=2py
.23s i n|,s i n,c os3xyxyxyx 解:;的斜率为点且与切线垂直的直线从而过,处的切线斜率为故曲线在点3223)21,3(PP .0233232),3(3221yxxy即所求的直线方程为注 :满足条件的直线称为曲线在 P点的 法线 . O A x M P y 例 2:如图 ,质点 P在半径为 10cm的圆上逆时针做匀角速
特例 :e =0,则 a = b,则 c=0,两个焦点重合 ,椭圆方程变为 (?) 2020/12/25 (1)椭圆标准方程 )0(12222 babyax所表示的椭圆的存在范围是什么。 (2)上述方程表示的椭圆有几个对称轴。 几个对称中心。 (3)椭圆有几个顶点。 顶点是谁与谁的交点。 (4)对称轴与长轴、短轴是什么关系。 (5)2a 和 2b是什么量。 a和 b是什么量。
简称充要条件 , 记作 . qp 、必要条件的基本步骤: ( 1)认清条件和结论; ( 2)考察 p q 和 q p 的真假。 例 2.填表 典型例题 p q p是 q的什么条件 q是 p的什么条件 y是有理数 y是实数 5x 3xba baBxAx 且 BAx 0ab 0a0)2)(1( yx 21 yx 且m, n全 是奇数 m+n是偶数
3 x=1 C B A 3x+5y=25 设 Z= 2x +y ,式中变量x、y 满足下列条件 , 求z的最大值和最小值。 3x+5y≤25x4y≤ 3 x≥1 B C x y o x- 4y=- 3 3x+5y=25 x=1 A 例 1:设 z= 2x- y,式中变量 x、 y满足下列条件 求z的最大值和最小值。 3x+5y≤25 x - 4y≤- 3 x≥1 解:作出可行域如图 : 当z=