新人教a版高中数学选修2-132立体几何中的向量方法之二内容摘要:
,P A n |. ∴ d =| PA || co s ,P A n |= | | | | | c o s , |||P A n P A nn = ||||PA nn . nAPO向量法求点到平面的距离 : 例 2: 如图,已知正方形 ABCD 的边长为 4 , E 、 F 分别是 AB 、 AD 的中点, GC ⊥平面 ABCD ,且 GC = 2 ,求点 B 到平面 EFG 的距离 . D A B C G F E x y z 分析 : 用几何法做相当困难 , 注意到坐标系建立后各点坐标容易得出 , 又因为求点到平面的距离可以用法向量来计算 , 而法向量总是可以快速算出 . 果断地用坐标法处理 . D A B C G F E x y z 解:如图,建立空间直角坐标系 C - xy z . 由题设 C ( 0 , 0, 0 ) , A ( 4, 4 , 0) , B ( 0, 4 , 0) , D ( 4, 0, 0 ) , E ( 2 , 4, 0 ) , F ( 4, 2, 0 ) , G( 0 , 0, 2) . ( 2, 2, 0 ) , ( 2, 4, 2 ) ,E F E G 设平面 E F G 的一个法向量 为 ( , , )n x y z n E F n E G,| B E | 2 11 .11ndn 2 2 02 4 2 0xyx y Z 11( , , 1 ) ,33nB ( 2, 0, 0 )E 答 : 点 B 到平面 EFG 的距离 为 2 1111 . 例 2 : 如图,已知正方形 ABCD 的边长为 4 , E 、 F 分别是 AB 、 AD 的中点, GC ⊥平面 ABCD ,且 GC = 2 ,求点 B 到平面 EFG 的距离 . 练习 ( 用向量法求距离 ) : 1. 如图 , ABCD 是矩形 , PD 平面 ABCD , P D D C a , 2A D a , 、MN 分别是 、A D PB 的中点 ,。新人教a版高中数学选修2-132立体几何中的向量方法之二
相关推荐
就是曲线 y=f(x)在点 P(x0 ,f(x0))处的切线的斜率 . 即 : 039。 ( )k f x切 线 故 曲线 y=f(x)在点 P(x0 ,f(x0))处的切线方程是 : ))(()( 000 xxxfxfy /0 0 0/0/01 y = f ( x ) P ( x ,f ( x ) ) f ( x )y 2 f ( x ) 0 , Xf ( x ) 0 , X注 :
8 .2 ( / )21 hhv m s思考 ? 当时间从 t1增加到 t2时 ,运动员 的平均平均速度是多少 ? 2121( ) ( )h t h ttth(t)=++10 • 若设 Δx=x2- x1, Δy=f(x2)- f(x1) 121) ( )fxxx2f(x2121f ( x ) f ( x )y =x x x 上述问题中的变化率可用式子 表示 我们称之为函数
010y y xx x x另 一 方 面 k=2012 k=2kxk消 去 得 2k 解 得 因此 ,切线方程为 y=177。 2x. 例 2 如图 , 它表示跳水运动中高度随时间变化的函数 )( 2 ttth的图象 . 根据图象 , 请描述、比 较曲线 在 附近的变化情况 . 210 , ttt)(th 解 : 可用曲线 h(t) 在 t0 , t1 ,
, 则 ,lm ( 0 )2≤ ≤ c o sabab例 2 09 0 ,R t A B C B C A A B C中 , 现 将 沿 着1 1 1A B C A B C平 面 的 法 向 量 平 移 到 位 置 , 已 知1B C C A C C , 1 1 1 1 1 1A B A C D F取 、 的 中 点 、 ,11B D A F求 与 所 成 的 角 的 余 弦
解 : 三、应用举例 三、应用举例 例 2 已知 、 ,求: ( 1)线段 的中点坐标和长度; ( 3 , 3 , 1 )A (1 , 0 , 5 )BAB解:设 是 的中点,则 ( , , )M x y z AB 1 1 3( ) ( 3 , 3 , 1 ) 1 , 0 , 5 2 , , 3 ,2 2 2 O M
似的结论呢。 ,abx y z O ijkQ P p.OP OQ z k .OQ x i y j.O P O Q z k x i y j z k 由此可知,如果 是空间两两垂直的向量,那么,对空间任一向量 ,存在一个有序实数组 {x,y,z}使得 我们称 为向量 在 上的分向量。 ,i j kp.p x i y j z k ,xi y j z k,i j