新人教a版高中数学选修1-132导数的计算导数运算法则内容摘要:
: 2( ) ( ) ( ) ( ) ( ) ( ( ) 0 )() ()f x f x g x f x g x gxgx gx 例 y=x32x+3的导数 . 练习 : P92 2 4:1( 5 ) .。 ( 6) . .y y x xx2 题 再 加 两 题例 4:求下列函数的导数 : 222212( 1 )。 ( 2)。 1(3 ) t a n。 ( 4) ( 2 3 ) 1。 yxxxyxyxy x x 答案 :。 41)1( 32 xxy 。 )1(1)2(222xxy。 c os1)3( 2 xy 。 16)4(23xxxy。新人教a版高中数学选修1-132导数的计算导数运算法则
相关推荐
, 所以 32)( 2 xxxf).1(222)( xxxf当 , 即 时 , 函数 单调递增。 0)( xf 1x 32)( 2 xxxf当 , 即 时 , 函数 单调递减 . 0)( xf 1x 32)( 2 xxxf解 : (3) 因为 , 所以 ),0(,s i n)( xxxxf.01c o s)( xxf因此 ,
vxuxvxuxyxxxx 0000 l i ml i ml i ml i m)()( 39。 39。 xvxu 的导数求例 xxy si 3 的导数求例 24 xxxy 法则 2 两个函数的积的导数 ,等于第一个函数的导数乘第二个函数 ,加上第一个函数乘第二个函数的导数 ,即 vuvuvu
性质 二是利用不等式 三是利用导数 注: 求函数最值的一般方法: 例 求函数 f(x)=x24x+6在区间 [1, 5]内 的最大值和最小值 法一 、 将二次函数 f(x)=x24x+6配方 , 利用二次函数单调性处理 例 求函数 f(x)=x24x+6在区间 [1, 5]内 的极值与最值 故函数 f(x) 在区间 [1, 5]内的极小值为 3, 最大值为 11, 最小值为 2 法二、 解、 f
函数在点 x0处的变化率 ,得到曲线 在点 (x0,f(x0))的切线的斜率。 )( 0xf ( 2)根据直线方程的点斜式写出切线方程,即 ).)(()( 000 xxxfxfy 二、新课 —— 几种常见函数的导数 根据导数的定义可以得出一些常见函数的导数公式 . 公式 1: . 0 ( )CC 为 常 数0: ( ) , ( ) ( ) , 0 ,( ) l im 0 .xyy
学们求下列函数的导数 : 22) ( ) ,3 ) ( ) ,14) ( ) ,y f x xy f x xy f xx39。 1y 2139。 yx39。 2yx表示 y=x图象上每一点处的切线斜率都为 1 这又说明什么 ? 公式 2: . )()( 1 Qnnxx nn 请注意公式中的条件是 ,但根据我们所掌握的知识 ,只能就 的情况加以证明
当自变量 x 在 x0 处取得增量 △ x ( 点 x0 +△ x 仍在该定义内)时, 相应地函数 y 取得增量 △ y = f (x0 +△ x) f (x0 ),若△ y与△ x之比当 △ x→0 的极限存在,则称函数 y = f(x)在点 x0 处可导 , 并称这个 极限 为函数 y = f(x)在点 x0 处的 导数, 记为。 0()fx000 00( ) ( )( ) l im l