新人教a版高中数学选修1-123抛物线之二内容摘要:
的焦点 F任作一条直线 m, 交这抛物线于 A、 B两点,求证:以 AB为直径的圆 和这抛物线的准线相切. 证明:如图. xyEO FBADCH所以 EH是以 AB为直径的圆 E的半径,且 EH⊥ l,因而圆 E和准线 l相切. 设 AB的中点为 E,过 A、 E、 B分别向准线 l引垂线 AD, EH, BC,垂足为 D、 H、 C, 则| AF|=| AD|,| BF|=| BC| ∴ | AB| =| AF|+| BF| =| AD|+| BC| =2| EH| 练习 : ,对称轴为 x轴,焦点在直线 3x4y12=0上,那么抛物线通径长是 ______________. 的焦点 ,作倾斜角为 的直线 ,则被抛物线截得的弦长为 _________ x轴的直线交抛物线 y2=4x于 A、 B,且 |AB|=4 ,求直线 AB的方程 . 1616 y2 = 8x 0453 X=3 例 F的直线交抛物线于 A,B两点 ,通过点 A和抛物线顶点的直线交抛物线的准线于点 D,求证 :直线 DB平行于抛物线的对称轴 . x O y F A B D 例 3 过抛物线焦点 F的直线交抛物线于 A,B两点,通过点 A和抛物线顶点的直线交抛物线的准线于点 D,求证:直线 DB平行于抛物线的对称轴。 ,22 pxyx物线的方程为建立直角坐标系。 设抛轴,它的顶点为原点,轴为证明:以抛物线的对称,2),2(0020 xypyOAypyA 的方程为则直线的坐标为点2px 抛物线的准线是.02ypyD 的纵坐标为联立可得点.222),0,2(200ppypxyyAFpF方程为的所以直线的坐标是因为点.02ypyB 的纵坐标为联立可得点 轴。 所以 xDB //x y O F A B D 小结 : :范围、对称性、顶点、离心率、通径。 、焦点坐标及解决其它问题。 2. 3 .2 抛物线的简单几何性质( 二 ) 图形 标准方程 范围 对称性 顶点 离心率 )0(2ppxy 2)0(2ppyx 2)0(2ppyx 2Ryx ,0 )0,0(Ryx ,0Rxy ,0Rxy ,0)0,0()0,0()0,0(关于 x 轴 对称,无 对称中心 关于 x 轴 对称,无 对称中心 关于 y 轴 对称,无 对称中心 关于 y 轴 对。新人教a版高中数学选修1-123抛物线之二
相关推荐
000 xxfxxfxfx )( 0xf 或 , 即 0| xxy 。 其导数值一般也不相同的值有关,不同的与 000 )(.1 xxxf 的具体取值无关。 与 xxf )(.2 0一概念的两个名称。 瞬时变化率与导数是同 .3说明: )(xf0x 0xxyxy0x( 1)函数 在点 处可导,是指 时, 有极限.如果 不存在极限,就说函数在 处不可导
mxxf x x f xyk f xxx 切 线 这个概念 :① 提供了求曲线上某点切线的斜率的一种方法。 ② 切线斜率的本质 —— 函数在x=x0处的导数 . 例 1:求曲线 y=f(x)=x2+1在点 P(1,2)处的切线方程 . Q P y = x 2 +1 x y 1 1 1 O j M y x .2)(2l i m)11(1)1(l i
当自变量 x 在 x0 处取得增量 △ x ( 点 x0 +△ x 仍在该定义内)时, 相应地函数 y 取得增量 △ y = f (x0 +△ x) f (x0 ),若△ y与△ x之比当 △ x→0 的极限存在,则称函数 y = f(x)在点 x0 处可导 , 并称这个 极限 为函数 y = f(x)在点 x0 处的 导数, 记为。 0()fx000 00( ) ( )( ) l im l
求它的焦点坐标和准线方程; ( 2)已知抛物线的焦点坐标是 F( 0, 2), 求它的标准方程。 根据下列条件写出抛物线的标准方程: ( 1)焦点是 F( 3,0); ( 2)准线方程是 x=- ; ( 3)焦点到准线的距离是 2; y2=12x y2=x y2=4x , y2=- 4x , x2=4y , x2=- 4y 41 已知抛物线的方程是 x2 +4y=0, 求它的焦点坐标和准线方程
与 x轴的两个交 A (a,0), A (a,0)叫双曲线的顶点 2222 1xyab=1 2 (2)实轴 :线段 A A 实轴长 :2a 虚轴 :线段 B B 虚轴长 :2b 1 2 1 2 • y B2 A1 A2 B1 x O b a M N Q 2222 1xyab= : (1)渐进线的确定 :矩形的对角线 (2)直线的方程 : y=177。 - x b a 渐渐接近但永不相交
: 222221ababaace 标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率 a、 b、 c的关系 2222 1 ( 0 )xy abab |x|≤ a,|y|≤ b 关于 x轴、 y轴成轴对称;关于原点成中心对称 (a,0)、 (a,0)、 (0,b)、 (0,b) (c,0)、 (c,0) 长半轴长为 a,短半轴长为 b. ab ceaa2=b2+c2