北师大版高中数学(必修133指数函数之一内容摘要:
的图象 2 xy 1()2xy 2020/12/25 指数函数 在底数 及 这两种情况下的图象和性质 xya 1a 01aa>1 0< a<1 图 象 性 质 0 x y (0,1) y=1 xya y x (0,1) y=1 xyao (1)定义域 : R (2)值域 : (0,+∞) (3)过点 (0,1),即 x=0时 ,y=1 (4)在 R上是增函数 (4)在 R上是减函数 10,01,0xxaxax10,01,0xxaxax2020/12/25 例题分析 例 1.某种放射性物质不断变化为其他物质,每经过 1年剩留的这种物质是原来的 84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留 1个有效数字)。 分析:通过恰当假设,将剩留量 y表示成经过年数 x的函数,并可列表、描。北师大版高中数学(必修133指数函数之一
相关推荐
y … 1 1 0 8 从图像上看出 , f(x)=x3在 R上 是增函数 解 : : 思考 :函数图象上横坐标互为相反数的点的纵坐标有什么关系。 x f(x) x f(x) x y o A‘(x,y) A(x,y) 学生活动 4 由图像得出奇偶函数的概念 奇函数定义: 一般地,图像关于原点 对称的函数叫作 奇函数 3yx 在奇函数中, f(x)和 f(x)的绝对值相等,符号相反,即
证 f(x)与 f(- x)之间的关系来确定奇偶性. 【 解析 】 (1)函数定义域为 {x|x≠0} f(- x)= (- x)- =- (x- )=- f(x) ∴ f(- x)=- f(x) ∴ 函数 f(x)= x-是奇函数. (2)函数 f(x)的定义域为 [- 3,3]关于原点对称, f(- x)= (- x)2- 1= x2- 1= f(x), ∴ f(- x)= f(x) ∴
( 3)确定两数的大小; 练习 1: 比较下列各题中两个值的大小 : ⑴ log106 log108 ⑵ ⑶ ⑷ < < > > 例 2 比较下列各组中两个值的大小 : ( 1) log 3π , log 2 . ( 2) log 67 , log 7 6。 解:( 1) ∵ log3π> log31= 0 < log21= 0 ∴ log3π> log 2 o x y Y= log 2 x
( 2 ) 已知 f-72= f ( - ) = f ( - 3 - ) = f ( - 3 + ) = f-52=158. 二次函数的值域(最值) 求 f(x)= x2- 2ax- 1在区间[ 0,2]上的最大值和最小值 . 【 思路点拨 】 二次函数的对称轴 x= a变化,导致函数最值变化 . ① 当 a< 0时,由图 ① 可知, f(x) min =
{a, b, d}, {a, b, c, d}. (1)正确区分子集与真子集概念是解题的关键 . (2)写一个集合的子集时,按子集中元素个数多少,以一定顺序来写避免发生 重复和遗漏现象 . (3)集合中含有 n个元素,则此集合有 2n个子集,记住这个结论可以提高解答速 . A {x∈ N|- 1< x< 4},且 A中至少有一个元素 为奇数,问:这样的集合 A有多少个。
时, x + 2y + 2 = 17, 4x + y = 25. 故 A 中元素 (5,5 ) 的象是 (17 ,25 ). (2) 令 x + 2y + 2 = 54x + y = 5,得 x = 1y = 1, 故 B 中元素 (5,5 ) 的原象是 (1,1 ). (1)解答此类问题的关键是: ①分清原象和象; ②搞清楚由原象到象的对应关系; (2)对 A中元素