人教a版高中(选修2-2)数学归纳法内容摘要:
不可以省略。 (2)第二步,从 n=k(k≥n0)时命题成立的假设出发,推证 n=k+1 时命题也成立。 既然是假设,为什么还要把它当成条件呢。 这一步是在第一步的正确性的基础上,证明 传递性。 反例 想一想 2)12(..........531 nn 证明: ( 1)当 n=1时,左边= 1,右边= 等式成立。 ( 2)假设当 n=k时,等式成立,就是 112 2k)1k2(. . . . . . . . .531 那么 例 :当 Nn222)1k(1k2k]1)1k(2[k]1)1k(2[)1k2(...........531这就是说,当 n=k+1时等式也成立。 根据( 1)和( 2),可知等式对任何 n∈ N* 都成立。 例 2 用数学归纳法证明 1) 第一步应做什么。 此时 n0= ,左 = , 2)假设 n=k时命题成立,即 6)12)(1(321 2222kkkk 当 n=k时,等式左边共有 项, 第 k项是。 k。人教a版高中(选修2-2)数学归纳法
相关推荐
会淋雨,则下列说法中,正确的是( ) A 一定不会淋雨 B 淋雨机会为 3/4 C 淋雨机会为 1/2 D 淋雨机会为 1/4 E 必然要淋雨 D 课堂练习 二.填空题 20瓶饮料中,有 2瓶已过了保质期。 从中任取 1瓶,取到已过保质期的饮料的概率是 ____; 2在夏令营的 7名成员中,有 3名同学已去过北京。 从这 7名同学中任选 2名同学,选出的这 2名同学恰是已去过北京的概率是 ___
分别站 在甲的两边。 引申练习 4名男生和 4名女生站成一排,若要求男女相间,则不同的排法数有( ) 今有 10幅画将要被展出,其中 1幅水彩画, 4幅油画, 5幅国画,现将它们排成一排,要求同一品种的画必须连在一起,并且水彩画不放在两端。 则不同的排列方式有 种。 一排长椅上共有 10个座位,现有 4人就座,恰有五个连续空位的坐法种数为。 (用数字作答) 5760 B 480
表示多少种不同的信号。 例 4:用 0到 9这 10个数字,可以组成多少个没有重复数字的三位数。 百位 十位 个位 解法一:对排列方法分步思考。 6 4 8899181919 AAA 6488992919 AA从位置出发 解法二:对排列方法分类思考。 符合条件的三位数可分为两类: 百位 十位 个位 A390 百位 十位 个位 A290 百位 十位 个位 A296482
时, 2112 ,不等式显然成立 . (2) 假设当 n=k时不等式成立,即 2kk2, 那么,当 n=k+1时,有 2k+1=2 2k=2k+2k k2+k2≥k2+2k+1 =(k+1)2 这就是说,当 n=k+1时不等式也成立 . 根据 (1)和 (2),可知不等式对任何 n∈ N+都成立 . 设 ∈ +且 n≥5,求证: 2n n2 评注:假设结论运用后按所证结果进行“拼凑” 是可以的
)结论为 “ 至少 ” 、 “ 至多 ” 、 “ 有无穷多个 ” 类命题; (4)结论为 “ 唯一 ” 类命题; 间接证明 (例题 1) .2 小的正周期求证:正弦函数没有比 先求出周期 思路 用反证法证明 是最小正周期 . 2间接证明 (例题 1) 假设 T是正弦函数的周期 则对任意实数 x都有 : 解 xTx s in)s in ( 令 x=0,得 0si n T即 ., ZkkT
=lg(8/10) =lg8lg10=3lg21 大前提 小前提 结论 大前提 小前提 结论 例。 在锐角三角形 ABC中 ,AD⊥ BC, BE⊥ AC, D,E是垂足 ,求证 AB的中点 M到 D,E的距离相等 . A D E C M B (1)因为有一个内角是只直角的三角形是直角三角形 , 在 △ ABC中 ,AD⊥BC, 即 ∠ ADB=900 所以 △ ABD是直角三角形 同理 △