人教a版高中(选修2-2)122导数运算法则内容摘要:
f x f x g x f x g x gxgx gx 例 y=x32x+3的导数 . 4:1( 5 ) .。 ( 6) . .y y x xx2 题 再 加 两 题例 4:求下列函数的导数 : 222212( 1 )。 ( 2)。 1(3 ) t a n。 ( 4) ( 2 3 ) 1。 yxxxyxyxy x x 答案 :。 41)1( 32 xxy 。 )1(1)2(222xxy。 c os1)3( 2 xy 。 16)4(23xxxy例 t秒后的距离 s满足 s= 4t3+16t2. (1)此物体什么时刻。人教a版高中(选修2-2)122导数运算法则
相关推荐
上单调递增 . xxxf 3)( 3 Rx(2) 因为 , 所以 32)( 2 xxxf).1(222)( xxxf当 , 即 时 , 函数 单调递增。 0)( xf 1x 32)( 2 xxxf当 , 即 时 , 函数 单调递减 . 0)( xf 1x 32)( 2 xxxf题 2 判断下列函数的单调性 , 并求出单调 区间 :。
x当 , 即 , 或。 当 , 即 . 0)( xf0)( xf2x 2x22 x当 x 变化时 , f (x) 的变化情况如下表 : x (–∞, –2) –2 (–2, 2) 2 ( 2, +∞) 0 0 f (x) – )(xf+ + 单调递增 单调递减 单调递增 3/28 3/4所以 , 当 x = –2 时 , f (x)有极大值 28 / 3。 当 x
(2)闭区间 [a,b]上的连续函数一定有最值 .开区间 (a,b)内的可导函数不一定有最值 ,但若有唯一的极值 ,则此极值必是函数的最值 . (3)函数在其定义域上的最大值与最小值至多各有一个 , 而函数的极值则可能不止一个 ,也可能没有极值 ,并且极大值(极小值 )不一定就是最大值 (最小值 ). 三、例题选讲 例 1:求函数 y=x42x2+5在区间 [2,2]上的最大值与最小值 . 解
2 babyax椭圆与对称轴的交点叫做椭圆的 顶点 .顶点坐标 :A1(a,0), A2(a,0),B1(0,b),B2(0,b) 线段 A1A2,B1B2分别叫做椭圆的 长轴 和短轴 ,它们的长分别等于 2a,2b,a和 b分别叫做椭圆的 长半轴长 和 短半轴长 . OyxF 1 F 2在椭圆标准方程的推导过程中令 a2c2=b2能使方程简单整齐 ,其几何意义
( 1)过点 A( 3, 0)且垂直于 x轴的直线为 x=3 ( 2)到 x轴距离为 2的点的轨迹方程为 y=2 ( 3)到两坐标轴距离乘积等于 1的点的轨迹方程为 xy=1 对 错 错 变式训练:写出下列半圆的方程 学习例题巩固定义 y y y 5 y 5 5 5 5 5 5 5 5 5 5 5 0 0 x x x x 例子:下列曲线与方程是否一一对应。 (1≤ x≤ 2) x 8 2 1 y
的右焦点作过椭圆xxyx..的值坐标原点,求实数为直径的圆过两点,若以、交于与双曲线已知直线aABBAyxaxy 13122有几条。 的直线,则这样若两点,双曲线于,交的右焦点作直线过双曲线l4|AB|.BAl1222yx的个数有几个。 的交点与曲线直线 14932|| xxyxy.的取值范围求有且只有一个公共点,的左支与双曲线:直线kyxkxy 11l 22