人教a版选修2-2223数学归纳1内容摘要:
)是递推的基础 . 找准 n0 (2)(归纳递推 )是递推的依据 n= k时命题成立.作为必用的条件运用,而 n= k+1时情况则有待 利用假设 及已知的定义、公式、定理等加以证明 证明:①当 n=1时,左边 =1,右边 =1,等式成立。 ②假设 n=k(k∈N ,k≥1) 时等式成立 ,即: 1+3+5+…… +(2k1)=k2, 当 n=k+1时: 1+3+5+…… +(2k1)+[2(k+1)1]=k2+2k+1=(k+1)2, 所以当 n=k+1时等式也成立。 由①和②可知,对 n∈N ,原等式都成立。 例、用数学归纳法证明 1+3+5+…… +(2n1)=n2 ( n∈N ) . 请问: 第②步中 “ 当 n=k+1时 ” 的证明可否改换为: 1+3+5+…… +(2k1)+[2(k+1)1]= 1+3+5+…… +(。人教a版选修2-2223数学归纳1
相关推荐
Byxwrao)证明了 “ 4 + 4 ”。 1948年,匈牙利的瑞尼 (Renyi)证明了 “ 1 + c ”,其中 c是一很大的自然 数。 1956年,中国的王元证明了 “ 3 + 4 ”。 1957年,中国的王元先後证明了 “ 3 + 3 ”和 “ 2 + 3 ”。 1962年,中国的潘承洞和苏联的巴尔巴恩 (BapoaH)证明了 “ 1 + 5 ”, 中国的王元证明了 “ 1 + 4 ”
. 解 :令 n=1,2,并整理得 .41{,231013{bababa以下用数学归纳法证明 : ).(24)12)(12(53 231 1 *2222 Nnn nnnn n (2)假设当 n=k时结论正确 ,即 : 2 2 2 21 2 k k + k+ + …+ = .1 3 3 5 ( 2 k 1 ) ( 2 k + 1 ) 4 k + 2则当
: (有且仅有 )形式出现 , 是唯一性问题 ,常用反证法 1)不存在。 2)至少两个 . 问题二 :求证一元二次方程至多 有两个不相等的实根 . 注 :所谓至多有两个 ,就是不可能有三个 ,要证 “ 至多有两个不相等的实根 ” 只要证明它的反面 “有三个不相等的实根 ” 不成立即可 . 问题 :如图。 已知 L L2 是异面直线且 A、 B∈ L1,C、 D∈ L2, 求证。 AC
趣 提出问题: ①课本 P42的思考 ② 不可能是等差数列 动手试验,分工合作,验证该题结论。 亲自体会直接证明的麻烦,和直接证明的困难“无处下手”,激发学生学习反证法的兴趣。 通过探究问题了解反证法的思考过程和特点 提出问题: ③上述两题直接证明困难,原因何在。 讨论原因: ①情况很多,分类讨论 ②条件太少直接证明找不到突破口 了解反证法主要用于以下两种情形: 要证的结论和条件之间的联系不明显
x O y F1 F2 P 222 cab 焦 点 : 方 程 : a,b,c的关系 : ab0 ac0 方程的推导 F2 F1 对于如图的椭圆如何建系比较方便。 o y x 以直线 F1F2为 y轴,线段F1F2的垂直平分线为 x轴,建立坐标系。 椭圆的方程为: )oba(1bxay2222方程的推导 F2 F1 o y x 建立如图坐标系。 设 M(x,y)为椭圆上的任意一点,
M aycxycx 2)()( 2222 axcyxcy 2)()( 2222 1 2 y o F F M x 0 12222 babyax 0 12222 babxay图 形 方 程 焦 点 F(177。 c, 0) F(0, 177。 c) a,b,c之间的关系 c2=a2b2 MF1+MF2=2a (2a2c0) 定 义 1 2 y