中职数学基础模块上册集合的运算2内容摘要:
3).补集的运算的性质 CS(CSA)=A, CSΦ=S, A∩CSA= Φ, A∪ CSA= S CS(A∩B)= (CSA)∪ (CSB), CS(A∪ B)= (CSA)∩(CSB) 延伸 拓展 f(x)= x2+px+q, 且集合 A= { x| x=f(x)} , B= { x| f[ f(x)] =x} (1)求证 A B; (2)如果 A= { 1,3} , 求 B 【 解题回顾 】 本题解答过程中 , 通过不断实施各种数学语言间的等价转换脱去集合符号和抽象函数的 “ 外衣 ” , 找出本质的数量关系是关键之所在 . 1.(03年北京 )设集合 A={x|x210},B={x|log2。中职数学基础模块上册集合的运算2
相关推荐
算两点之间的距离. 动脑思考 探索新知 1 1 1( , )P x y 2 2 2( , )P x y一般地,设 、 为平面内任意两点, 1 2 0 0 0( , )P P P x y则 线 段 中 点 的坐标为 1 2 1 200 ,.22x x y yxy巩固知识 典型例题 8. 1 两点间的距离与线段中点的坐标 例 2 已知点 S( 0, 2)、点 T( −6, −1),现将线段
1) A( 6, 2), B(- 2, 5); ( 2) C( 2,- 4), D( 7, 2). x y B A A1 A2 B2 B1 O 过 A, B, M 分别向 x 轴作垂线AA1, BB1, MM1,垂足分别为 A1,B1 , M1 ; 如图所示.设 M(x, y) 是 A(x1, y1) , B(x2, y2) 的中点. 过 A, B, M 分别向 y 轴作垂线 AA2, BB2,
1。 ( 2) (x- 3)2+ (y+ 2)2= 16。 ( 3) (x+ 1)2+ (y+ 1)2= 2。 ( 4) (x- 1)2+ (y- 1)2= 4. 例 1 求过点 A(6, 0),且圆心 B 的坐标为 (3, 2)的 圆的方程. 解:因为圆的半径 r= |AB|= 所以所求圆的方程是 (x- 3)2+ (y- 2)2= 13. ,13)02()63( 22 解:由方
何区别与联系。 与nnaaaaaaaannnnn. . . ,. . .,321 例题讲解: 例题 1 分别写出以下数列的首项和第四项 ( 1) 0,1,2,3, …: (2) 1,1,1,1,…。 (3) 思考:要写出以上数列的第 n项呢。 . ..81,61,41,213. 写出由正奇数的倒数按从大到小顺序排列的数列,并写出它的第 8项; 又能否写出由正奇数的倒数按从小到大顺序排列的数列。
{ 2, 1,0,1,2 } {11,13,15 ‥‥‥ } { 3,1} 二、描述法: 思考:大于 2的所有实数组成的集合,如 何表示。 新知识: 描述法 利用元素的特征性质来表示 集合的方法叫做描述法。 具体方法是:在花括号内写出代表元素,然后画一条竖线,竖线的右侧写出元素所具有的特征性质。 例:大于 2的所有实数组成的集合。 ︱ X X 2 { } ,X∈ R 例 2x+1≤0的解集。
的解组成的集合 抛物线 上的点 抛物线 上的点的横坐标 抛物线 上的点的纵坐标 数轴上离开原点距离大于 6的点的集合 平面直角坐标系中第 1或第 3象限上点的集合