09中考复习:函数应用题复习内容摘要:
,210202000200104242242时即当且仅当xxxxxy若 DE做为参观线路,须求 y的最大值。 令 202020],400,100[42 ttytx设 ,400100,104)( 214 tttttf 任取在三角形 ADE中,由余弦定理得: 当 100≤t1t2≤200时, 104t1t24•104, ∴ t1t24•1040,又 t1t20,t1t20,∴ f(t1)f(t2), 则 f(t)在 [100, 200]上是减函数。 当 200≤t1t2≤400时, 4104t1t242•104, ∴ t1t24•1040,又 t1t20,∴ f(t1)f(t2), 则 f(t)在 [200, 400]上是增函数。 210x 2102 0 0m in y3103 0 0 n a xy∴ 当 t=200,即 当 t=100或 t=400即 x=10或 20时, 210x故若 DE是输水管道的位置,则需使 若 DE是参观线路,则需使 x=10或 20 思考: DE的几何意义是什么。 214212124214121104)()104()104()()(tttttttttttftf四、数列模型 如果数学应用题中涉及的量,其变化带有明显的离散性,那么所考查的很有可能就是数列模型。 例 某乡为提高当地群众的生活水平,由政府投资兴建了甲、乙两个企业, 1997年该乡从甲企业获得利润 320万元,从乙企业获。09中考复习:函数应用题复习
相关推荐
O的切线。 O A B C 分析: 欲证 AB是 ⊙ O的切线,由于 AB过圆上点 C,若连结 OC,则AB过半径 OC的外端,只需证明 OC⊥AB . 例 已知:直线 AB经过 ⊙ O上的 点 C,并且 OA=OB,CA=CB. 求证:直线 AB是 ⊙ O的切线。 O A B C 证明:如图,连结 OC. ∵ OA=OB,CA=CB ∴ OC 是等腰△ OAB 底边 BC上的中线 ∴
2 3 O B A C D 证明:如图,连接 OC. 练习 1 按图填空: (1). 如果 AB是 ⊙ O的切线, 那么 A O B ⊙ O的切线 (2). 如果 OA⊥ AB,那么 AB是 切点 (3).如果 AB是 ⊙ O的切线, OA⊥ AB,那么 A是 ⊥ OA AB. 练习 2 如图的两个圆是以 O为圆心的同心圆,大圆的弦 AB是小圆的切线, C为切点 .求证: C是 AB的中点 .
F E D C 如: A B C D L1 L2 如: A B C D L1 L2 如: 结论: EF∥ AB∥ CD, EF= ( AB+CD) 1 2 一组平行线在一条直线上截得的线段相等, 则在其它直线上截得的线段也。 过三角形一边的中点,且平行于另一边的直线,必过。 过梯形一腰的中点,且平行于底边 的直线,必过。 A B C D E F 条件: AD∥ BE∥ CF, AB=BC 结论:
真实性_调查的数据是真实的 . 二、 统计 的 相关概念 : 一般地,对于 n个数 x1,x2,…… ,xn,我们把(x1+x2+…… +xn)247。 n叫做这个数的平均数 ,简称平均数 . : 一般地 ,n个数据按大小顺序排列 ,处于最中间位置的一个数据 (或最中间两个数据的平均数 )叫做这组数据的中位数 (median). :
角平分线性质定理及逆定理;三角形的三条角平分线交于一点 (内心 )。 ⑤ 垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点 (外心 )。 ⑥ 三角形中位线定理。 ⑦ 等腰三角形 、 等边三角形 、 直角三角形的性质和判定定理。 ⑧ 平行四边形 、 矩形 、 菱形 、 正方形 、等腰梯形的性质和判定定理。 (4)通过对欧几里得 《 原本 》 的介绍 ,
用图形的 相似解决一些实际问题 (如利用相似测量旗杆的高度 )。 ⑥ 通过实例认识锐角三角函数 (sinA,cosA, tanA), 知道 300, 450, 600角的三角函数值;会使用计算器由已知锐角求它的三角函数值 , 由已知三角函数值求它对应的锐角。 ⑦ 运用三角函数解决与直角三角形有关的简单实际问题。 (1)认识并能画出平面直角坐标系;在给定的直角坐标系中 , 会根据坐标描出点的位置