数学建模十大经典算法内容摘要:
数学建模十大经典算法 建模十大经典算法1、蒙特卡罗算法。 该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时通过模拟可以来检验自己模型的正确性。 2、数据拟合、参数估计、插值等数据处理算法。 比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用 为工具。 3、线性规划、整数规划、多元规划、二次规划等规划类问题。 建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用 件实现。 4、图论算法。 这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法。 这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法。 这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7、网格算法和穷举法。 网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8、一些连续离散化方法。 很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9、数值分析算法。 如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10、图象处理算法。 赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用 行处理。 历年全国数学建模试题及解法赛题 解法 93A 非线性交调的频率设计 拟合、规划 93B 足球队排名 图论、层次分析、整数规划 94A 逢山开路 图论、插值、动态规划 94B 锁具装箱问题 图论、组合数学 95A 飞行管理问题 非线性规划、线性规划 95B 天车与冶炼炉的作业调度 动态规划、排队论、图论 96A 最优捕鱼策略 微分方程、优化 96B 节水洗衣机 非线性规划 97A 零件的参数设计 非线性规划 97B 截断切割的最优排列 随机模拟、图论 98A 一类投资组合问题 多目标优化、非线性规划 98B 灾情巡视的最佳路线 图论、组合优化 99A 自动化车床管理 随机优化、计算机模拟 99B 钻井布局 0划、图论 00A 列分类 模式识别、别、人工神经网络 00B 钢管订购和运输 组合优化、运输问题 01A 血管三维重建 曲线拟合、曲面重建 01B 公交车调度问题 多目标规划 02A 车灯线光源的优化 非线性规划 02B 彩票问题 单目标决策 03A 传播 微分方程、差分方程 03B 露天矿生产的车辆安排 整数规划、运输问题 04A 奥运会临时超市网点设计 统计分析、数据处理、优化 04B 电力市场的输电阻塞管理 数据拟合、优化 05A 长江水质的评价和预测 预测评价、数据处理 05B 线租赁 随机规划、整数规划 06A 出版资源配置 06B 艾滋病疗法的评价及疗效的预测07A 中国人口增长预测 07B 乘公交,看奥运 多目标规划 数据处理 图论 08A 数码相机定位 08B 高等教育学费标准探讨09A 制动器试验台的控制方法分析 09B 眼科病床的合理安排 动态规划 10 题的解决依赖计算机,题目的数据较多,手工计算不能完成,如 03B,某些问题需要使用计算机软件,01A。 问题的数据读取需要计算机技术,如 00A(大数据) ,01A (图象数据,图象处理的方法获得) ,04A(数据库数据,数据库方法,统计软件包)。 计算机模拟和以算法形式给出最终结果。 法的多样性,一道赛题可用多种解法。 开放性还表现在对模型假设和对数据处理上。 历年竞赛题来看,常用的方法:线性规划 整数规划 非线性规划 动态规划 层次分析法图论方法 拟合方法 插值方法 随机方法 微分方程方法各种算法的详解一、蒙特卡洛算法1、含义的理解以概率和统计理论方法为基础的一种计算方法。 也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例(有很多相似的例题,包括平行线等)在数值积分法中,利用求单位圆的 1/4 的面积来求得 从而得到 位圆的 1/4 面积是一个扇形,它是边长为 1 单位正方形的一部分。 只要能求出扇形面积 正方形面积S 中占的比例 K= 就立即能得到 而得到 值。 怎样求出扇形面积在正方形面积中占的比例 K 呢。 一个办法是 在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。 将落在扇形内的点数 m 与所投点的总数 n 的比 m/n 作为 k 的近似值。 P 落在扇形内的充要条件是。 21已知:K= ,K ,s=1,求 s知 ,*s而 ,则 该算法可以修改后用 算或者 * 利用蒙特卡洛算法近似求圆周率 /*程序使用:#00 /*循环取样次数,每次取样范围依次变大*/ x,y; ; i; i=0;i 中*/y=*x*x+y*y)x,0,60结果:)参数估计(参考书:概率论与数理统计)参数估计为统计推断的基本问题,分为点估计和区间估计。 点估计:矩估计法X 连续型随机变量,概率密度 12(;,)X 为离散型随机变量 分布律 12(;,)为待估参数, 是来自 X 的样本,假设总体 X 的前 阶矩存在,12,k 12,n 连续型)12()(;,)或 (X 离散型) (其中 是 X 可能取, 1,2。 一般来说,它们是 的函数。 基于样本矩 依概率收敛12,k 1于相应的总体矩 ,样本矩的连续函数依概率收敛于相应的总体矩的连续函(,)数,我们就用样本矩作为相应的总体矩的估计量,而以样本矩的连续函数作为相应的总体矩的连续函数的估计量。 这种估计方法成为矩估计法。 最大似然估计法X 连续型随机变量 似然函数 其中121(),;)(;)是来自 X 的样本 的联合密度。 1(;)12, 为离散型随机变量 似然函数 其中121(),;)(;),是来自 X 的样本 的联合分布律。 1(;) 12, 1212,;);)n 则称 为 的最大似然估计值,称 为 的最大似然估计量。 (,x 12(,)这样,确定最大似然估计量的问题就归结为微分学中的求最大值的问题了。 估计量的评选标准为:(1)无偏性(2 )有效性(3)相合性区间估计:对于一个未知量,人们在测量或计算时,常不以得到近似值为满足,还需要估计误差,即要求知道近似值的精确程度(亦即所求真值所在的范围)。 这样的范围常以区间的形式给出,同时还给出此区间包含参数真值的可信度,这种形式的估计称为区间估计,这样的区间即所谓置信区间。 正态总体均值、方差的置信区间与单侧置信限(置信水平为 1- )一个正态总体 未知参数 其他参数 枢轴量的分布 置信区间已知2(0,1)/:/2()未知2 (1)/:/2(1)2未知22()(1)n:22/1/()(),S另外还包括两个正态总体的情况,其他区间估计:(0布参数的区间估计(3)插值1、含义的理解在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值(与拟合的不同点在于拟合的函数不需通过每一个离散点)。 插 值 问 题 的 提 法 是 : 假 定 区 间 a, b 上 的 实 值 函 数 f( x) 在 该 区 间 上 n 1 个 互 不相 同 点 x1 的 值 是 f , f( , 要 求 估 算 f( x) 在 a, b 中 某 点 的值。 其 做 法 是 : 在 事 先 选 定 的 一 个 由 简 单 函 数 构 成 的 有 n 1 个 参 数 数 类 ( 求 出 满 足 条 件 P( f( ( i 0, 1, n) 的 函数 P(x), 并 以 P()作 为 f()的 估 值。 此 处 f( x) 称 为 被 插 值 函 数 , 为插 值 结 (节 )点 , ( 为 插 值 函 数 类 , 上 面 等 式 称 为 插 值 条 件 ,( 中 满 足 上 式 的 函 数 称 为 插 值 函 数 , R( x) f( x) P( x) 称 为 插值 余 项。 当 估 算 点 属 于 包 含 x1 最 小 闭 区 间 时 , 相 应 的 插 值 称 为 内 插 , 否则 称 为 外 插。 2、 基 本 类 型多 项 式 插 值在 一 般 插 值 问 题 中 , 若 选 取 为 n 次 多 项 式 类 , 由 插 值 条 件 可 以 唯 一 确 定 一 个 n 次插 值 多 项 式 满 足 上 述 条 件。 拉 格 朗 日 插 值 和 牛 顿 插 值 都 属 于 多 项 式 插 值。 拉 格 朗 日 插 值 :设 连 续 函 数 y = f( x) 在 a, b上 对 给 定 n + 1 个 不 同 结 点 :分 别 取 函 数 值01,01,y其 中 ( 1)()试。数学建模十大经典算法
相关推荐
数学符号及读法大全 数学符号及读法大全常用数学输入符号: ± × ÷ () 【】 大写 小写 英文注音 国际音标注音 中文注音 耳法 塔 马 耳塔 普西隆 塔 塔 塔 塔 帕 姆达 mu nu xi 塞 密可戎 pi 格马 普西隆 西 米符号 含义i 平方根f(x) 函数 f 在自变量 x 处的值x) 在自变量 x 处的正弦函数值x) 在自变量 x 处的指数函数值,常被写作 x a 的 x 次方
各部门负责相关业务范围内 对应的相关方信息的收集,并及时受理与传递。 5 控制程序 内部信息包括以下内容: 正常信息,包括管理体系文件及体系运行 中产生的信息 ; 不符合与异常信息,如纠正和预防措施报告等; 紧急信息,如出现火灾等情况下的环境信息与记录。 其他内部 信息。 外部信 息主要包括: 上级主管部门(政府机构、上级公司) 及第三方认证机构等检查和审核的结果及反馈信息; 相关方的反馈
,如整箱未开封或已开封但未超一箱数的,在不影响继续销售的情况下,可凭原 销售单据在 15 天内按原价退还原销售点;若地板表面出现磨损、划伤、刮痕等损坏的,原则上不予以退货。 保修期内的缺陷,以修理为主。 确认无法修复的,则给予更换。 非产品质量引起的维修,可为用户进行收费式服务。 出现安装质量问题由原安装单位负责免费维修或更换。 保修说明: 服务网点铺设的实木地板,在一年内出现下列问题
绩进行评定,建立供方档案。 质检部门负责对进厂原材料进行检验、验证。 仓库负责采购物资的分类管理、发放。 4. 工作程序 采购物资的分类 大米企业:原材料 (稻谷 ) 半成品 (大米 ) 包装袋 小麦粉企业:原材料(小麦)半成品 (小麦粉 ) 包装袋 食用油企业:原材料 (菜籽、棉籽 ) 半成品 (成品油 ) 桶、壶 (等 ) 选择合格的供方 供销部门根据同行厂家及其它渠道的信息,给调查
微分方程求解 第一节 微分方程的基本概念学习目的:理解并掌握微分方程的基本概念,主要包括微分方程的阶,微分方程的通解、特解及微分方程的初始条件等学习重点:常微分方程的基本概念,常微分方程的通解、特解及初始条件学习难点:微分方程的通解概念的理解学习内容:1、首先通过几个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2) ,且在该曲线上任一点 M(x,y )处的切线的斜率为 2x
程 序 详细步骤 备 注 步 骤 1 申请人填写《印章使用登记表》,印章保管人审核。 用印部门、 行政部 步 骤 2 登记备案、通知用印。 步 骤 3 印章归还,登记存档。 审批人 : 总经理、 行政总监 制作人: 行政文员 流程图: 用印 部门 行政部 相关领导 填写印章使用表 开始 通知用印 登记、存档 印章使用 登记、备案 印章归还 审核 审核 结束 重要文件用印 普通 用印 13 1