八年级数学上册 1.1.1 探索勾股定理教学案(新版)北师大版内容摘要:
2、得出上面结果的。 2、图 l 一 2 中,A、B、C 之间的面积之间有什么关系。 1一 1中 A、B、C 的关系呢。 图 1一 3 中,A 、B、C 之间有什么关系。 图 1 一 4 中,A 、 B 、C 之间有什么关系。 从图 1 一 l 、 1 一 2 、1 一 3 、l 一 4中你发现了什么。 图 1一 1、1 一 2、1 一 3、1 一 4中,你能用三角边的边长表示正方形的面积吗。 你能发现直角三角形三边长度之间的关系吗。 教学过程 课堂笔记二、互动导学一、创设问题的情境,激发学生的学习热情:出示引例,让学生思考,如何把实际问题转换成数学问题。 (引导学生画出数学图形)再发问:要求树的高, 3、只要求出什么就可以了?导课:对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理。 二、出示学习目标1、能探索出勾股定理2、能用勾股定理解决简单的问题。 三、探究勾股定理:探究活动一:让每个同学在自己的练习本上画一个直角三角形,分别量出三边的长,看一看三边的平方之间有何关系。 (四人一组进行讨论)以直角三角形两直角边为边的正方形面积和,等于以斜边为边的正方形面积。 四、议一议 你能发现直角三角形三边长度之间的关系吗。 直角三角边的两直角边的平方和等于斜边的平方。 这就是著名的“勾股定理”。 也就是说:如果直角三角形的两直角边为 a、b,斜边为 c。 那。八年级数学上册 1.1.1 探索勾股定理教学案(新版)北师大版
相关推荐
的效果,我首先播放一段植物 生长的视频,引入今天的话题,使教学内容产生诱惑力,激发学生的探究欲望,同时感受新生命带来的喜悦。 质疑探究 科学的本质就是从问题入手,通过问题强化学生的自我动机,培养学生的创新意识和科学精神。 因此,看完课件,我从学生可能的质疑出发设计问题即“绿色开花植物是从哪里来的。 ”“它们的一生发生了哪些变化。 ” “你还想知道些什么。 ”以这些问题层层深入,激活学生的思维
2、持恒定的速率 v 飞行时,飞船引擎需要提供的平均推力为A BS 1C D 考答案】:B【名师解析】:以飞船为参照物,选择一和飞船横截面积相等的圆柱内的尘埃进行研究。 则该圆柱内的尘埃相对于飞船以速度 v 做匀速直线运动,在 t 时间内,由长度为 x=截面积为 S、体积为 V=尘埃柱碰到飞船上,尘埃柱内尘埃颗粒数目为 N=埃总质量为 M=据动量定理,v ,联立解得:F= 选项 B 正确。 3.
变化 活动导入: ,现在我们以小组为单位,重点交流一下前一段时间凤仙花幼苗生长变化情况。 活动指导: ,及时进行反馈,引领学生在以后的时间里坚持进行观察。 (鼓励学生说出新发现、新问题)。 、叶的分布情况。 二、我们 的思考 :为什么植物的叶子都是平展的,而且在植株上交叉生长。 植物的
and sentences it is chanted. 4) Divide class into groups .One group chants the questions and the other group chants the statements. 教学后记 : 通过 TPR,以动作形式导入 —操练新知识,学生有较浓厚的学习兴趣,而且教学效果较好。 在学习人物的过程中
Yes, there is. No, there isn’t. Is there a cat. Yes, there is. No, there isn’t. 特殊疑问句: How many apples are there ? There are nieen. How many cherries are there ? There are eighteen. How many
137+ 58 c、 100x28 +28 4 、 101x28 d 、 13x(9+1) 5 、 17x4x25 e 、 137 +(42+58) 6 、 125x (8 + 10) f 、 17x(4x25) 判断: 48 99 +1=48 100 ( ) 1+2 3=1+3 2 ( ) 4 a +5 a=(4+5) a ( ) 24 (5+12)=24 5 +12 ( ) 800247。