(人教A版)选修4-5数学 1.2.2《绝对值不等式的解法一》ppt课件内容摘要:
1、2016/11/29 该课件由【语文公社】等式和绝对值不等式1 2 绝对值不等式1 对值不等式的解法 (一 )2016/11/29 该课件由【语文公社】1/29 该课件由【语文公社】 b | c (或 | b | c )( c 0 )型不等式的解法解下列不等式 (1 )| 4 x 5| 25 ; (2 )| 3 2 x | 9 ; (3 ) 1 | x 1| 5. 2016/11/29 该课件由【语文公社】(1 ) 因为 |4 x 5| 25 4 x 5 25 或 4 x 5 25 4 x 20或 4 x 30 x 5 或 x 152, 所以原不等式的解集为xx 5 或 x 152. (2 ) 2、 因为 |3 2 x | 9 |2 x 3| 9 9 2 x 3 9 6 2 x 12 3 x 6 , 所以原不等式的解集为 x | 3 x 6 (3 ) 因为 1 | x 1| 5 1 x 1 5 或 5 x 1 1 2 x 6或 4 x 0 , 所以原不等式的解集为 x |2 x 6 或 4 x 0 2016/11/29 该课件由【语文公社】对于这种类型的不等式 , 在求解时 , 可以直接在 |x| x| 这时原不等式化成了一元一次不等式 (组 ), 然后根据不等式的性质求解2016/11/29 该课件由【语文公社】变式训练 1 解下列不等式 (1 )| 1 2 x |5 ; (2 )| 3、4 x 1| 2 1 0 . 解析: ( 1 ) |1 2 x | 5 |2 x 1 | 5 2 x 1 5 或 2 x 16或 2 x 3 或 x 2. 所以原不等式的解集为 x | x 3 或 x 2 2016/11/29 该课件由【语文公社】2 ) |4 x 1| 2 10 |4 x 1| 10 2 |4 x 1| 8 8 4 x 1 8 7 4 x 9 74 x 94. 所以原不等式的解集为x | 74 x 94. 2016/11/29 该课件由【语文公社】不等式的解法 解含有参数的绝对值不等式时 , 常常需要对参数进行分类讨论 ,要注意讨论应不重不漏 解关于 x 的不等式x 1x a 4、 1. 2016/11/29 该课件由【语文公社】本题属于 |b| 可按解此类不等式的常规方法求解 , 去掉绝对值符号后转化为不等式组 , 再对 也可以转化为 |x 1| |x a|, 两边平方 , 去掉绝对值符号再求解2016/11/29 该课件由【语文公社】解法一 x 1x a 1 1 x 1x a 1 x 1x a 1 ,x 1x a 12 x ( 1 a )x a 0 , a 1x a 0. (1 ) 当 a 1 0 , 即 a 1 时 , 由 得 x a , 由 得 x 1 又 a 1 , 1 a , x 1 原不等式的解集为xx 1 2016/11/29 该课件由【语文公社】 ) 5、当 a 1 0 , 即 a 1 时 , 无解 原不等式的解集为 . (3 ) 当 a 1 0 , 即 a 1 时 , 由 得 x a , 由 得 x 1 又 a 1 , 1 a , x 1 原不等式的解集为xx 1 综上可知 , 当 a 1 时 , 原不等式的解集为xx 1 a 1 时 , 原不等式的解集为 ;当 a 1 时 , 原不等式的解集为xx 1 2016/11/29 该课件由【语文公社】原不等式可化为 | x 1| | x a |. 两边平方得 2 x 1 2 即 2( a 1) x 1 当 a 1 0 , 即 a 1 时 , 2 ( a 1) x (1 a )( 1 a ) , x 6、 1 当 a 1 0 , 即 a 1 时 , 0 x 0 , 此时原不等式无解 当 a 1 0 , 即 a 1 时 , 2 ( a 1) x (1 a )( 1 a ) , x 1 综上所述 , 当 a 1 时 , 原不等式的解集为xx 1 a 1 时 , 原不等式的解集为 ;当 a 1 时 , 原不等式的解集为xx 1 2016/11/29 该课件由【语文公社】解含有参数的绝对值不等式 , 除按绝对值不等式来解外 , 还必须对参数进行分类讨论 ,在讨论时,要注意 “ 不重不漏 ” 的原则解不等式 |2 x 3| a 1( a R) 【错解】 由题意得 a 1 2 x 3 a 1 , a 42 7、 x a 22, 故不等式的解集为a 42,a 22. 2016/11/29 该课件由【语文公社】 所给不等式含有参数 a, 而错解中第一步是建立在 a 1 0的基础上的因为 a R, 所以 a 1的正负情况不确定 ,应先进行讨论【正解】 当 a 1 0 时 , 原不等式无解 , 解集为 . 当 a 1 0 时 , 同错解 综上所述 , 当 a 1 时 , 原不等式的解集为a 42,a 22;当a 1 时 , 原不等式的解集为 . 2016/11/29 该课件由【语文公社】忽略了对参数的讨论 【易错点辨析】 解含有参数的绝对值不等式时 , 常常忽略对参数的正负讨论而出错 2016/11/29 该课件由【语文公社】。(人教A版)选修4-5数学 1.2.2《绝对值不等式的解法一》ppt课件
相关推荐
1、2016/11/29 该课件由【语文公社】等式和绝对值不等式1 1 不 等 式1 本不等式2016/11/29 该课件由【语文公社】1/29 该课件由【语文公社】)若 x 0,求 f(x) 4x的最小值(2)设 x 0, y 0且 2x y 1,则的最小值是 _;分析: 函数解析式在形式上已经基本符合了基本不等式的形式 , 但还应注意适用前提2016/11/29 该课件由【语文公社】( 1
(通过钴玻璃片 ) 能与 NaOH 溶液反应生成白色 Mg(OH)2 沉淀,此沉 淀能溶于盐酸 ⑤ Fe2+: 能与 NaOH 溶液反应,先生成白色 Fe(OH)2 沉淀,迅速 变为灰绿色,最后变成红褐色 Fe(OH)3 沉淀。 或向 Fe2+盐溶液中加入 KSCN 溶液,不显红色,再加入 少量新制的氯水后立即显红色。 ⑥ NH4+: 铵盐与 NaOH 溶液反应,并加热,放出使湿润的红色
不良行为:旷课、夜不归宿;携带管制刀具;打架斗殴、辱骂他人;强行向他人索要财物;偷窃故意毁坏财物;参与赌博或变相赌博;观看、收听色情、淫秽的音像制品、读物等;进入法律、法规规定未成年人不宜进入的营业性歌舞厅等场所;其他严重违背社会公德的不良行为。 严重不良行为 • 《 中华人民共和国预防未成年人犯罪法 》 第三十四条规定,本法所称“严重不良行为”是指下列严重危害社会,尚不够刑事处罚的违法行为
注意事项 :。 ,后用待装液润洗 2~3次。 一、仪器的使用 计量仪器 移液管 主要用途 : 准确量取一定体积的液体 (精确度 ) 注意事项 : ,用食指堵住 , 通过转动移液管使液面下降到刻度线。 ,尖嘴部分剩余液体一般不能 吹出 一、仪器的使用 计量仪器 胶头滴管 主要用途 :吸取或滴加少量液体 注意事项 : ,垂直滴下。 一、仪器的使用 计量仪器 温度计 主要用途 : 用于测量温度
在下图情景中,你会怎么做。 上学、放学途中 • ( 1)、骑自行车的同学要在自行车道上行驶,不能随意骑入机动车道或人行横道;不要载人,不要逆行,不要双手离把,不要相互嬉闹快速追逐,不要边骑车边听音乐。 • ( 2)、步行的同学要走人行横道,过马路时要注意交通信号,走人行横道,听从交通民警的指挥。 • ( 3)、乘坐公共汽车的同学在上下车时不要争先恐后,更不能在车辆入、出站时尾随追逐车辆。
1、2016/11/29 该课件由【语文公社】明不等式的基本方法2 1 比 较 法2016/11/29 该课件由【语文公社】1/29 该课件由【语文公社】)已知 a, b R,求证: 1 a(b 1);(2)已知 a, n 1,求证: bn1b 用作差比较法证明不等式 , 作差后要注意因式分解或配方 , 以利于判断符号2016/11/29 该课件由【语文公社】(1) 1 a(b 1)(a b)2