20xx春人教版数学八下172勾股定理的逆定理word优秀教学设计内容摘要:

( 1)画一画:下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位: cm)画出三角形: ① , 6, ② 6, 8, 10 ( 2)想一想:请判断这些三角形的形状,并提出猜想 . 教师指导学生按要求画三角形、判断形状、猜想命题 . 学生展示:画出的图形(展台展示)并说明做法 . 师:根据上面的验证,你会猜想到什么。 生:如果三角形的三边长 a、 b、 c 满足 a2+b2=c2,那么这个三角形是直角三角形 . 学生回答,教师板书:如果三角形的三边长 a、 b、 c满足 a2+b2=c2,那么这个三角形是直角三角形 . 师:这就是今天我们要学习的命题 2. 设计意图: 通活动通过让学生按已知数据作出三角形,并测量三角形三个内角的度数来进一步获得一个三角形是直角三角形的有关边的条件,让学生经历测量、计算、归纳和猜想的过程,了解几何知识的探索过程 . 师:命题 2 和之前我们学过的命题 1 有什么联系呢。 生:这两个命题的题设和结论正好相反 . 师:像这样的两个命题我们叫做互逆命题 . 教师出示互逆命题的概念,并介绍原命题和逆命题 . 师:你能举出有关互逆命题的例子吗。 学生举手回答,教师及时点评 .并让学生思考:在我们大家举出的互逆命题 中原命题和逆命题都成立吗。 设计意图: 让学生在合作交流的基础上明确互逆命题的概念,在生生互动的过程中掌握互逆命题的真假性是各自独立的 . . 师:对于刚才的猜想 命题 2,你能给出证明吗。 它的题设和结论是什么。 生:题设是三角形的三边长 a、 b、 c 满足 a2+b2=c2 ,结论是这个三角形是直角三角形 . 根据题设、结论师生共同写出已知、求证 . 已知:如图,△ ABC的三边长 a, b, c, 满足 a2+b2=c2. 求证:△ ABC是直角三角形. 师 :要证明 △ ABC是直角三角形 ,我们需要知道∠ B 是直角,那如何证明∠ B 是直角呢。 直接在 △ ABC中 证明,可以吗。 上面我们证明了以 、 形,这个问题和前面的的问题有相似的地方吗。 小组讨论得出证明思路,证明猜想的正确性 .教师适时点拨,总结证明步骤 . 师:通过刚才的证明,我们可以得出前面的猜想是正。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。