高中数学(人教A版)选修2-1 2.1.1 曲线与方程 课件(共20张ppt)内容摘要:
1、曲线与方程第二章 圆锥曲线与方程下图为卫星绕月球飞行示意图,据图回答下面问题: 假若卫星在某一时间内飞行轨迹上任意一点到月球球心和月球表面上一定点的距离之和近似等于定值2a,视月球为球体,半径为 R,你能写出一个轨迹的方程吗。 义 .(重点、难点)(难点)探究点 1 曲线的方程与方程的曲线问题 1:在直角坐标系中 , 平分第一 、 三象限的直线和方程 有什么关系。 ),( 00 )在直线上任找一点 则是方程 的解;00( , ) ,M x y 0 0 0 0,x y x y, 即 ( )(2)如果 的解,那么00( , ) 坐 标 的 点 在 直 线 上00 0( , ) x y x 与此方程 2、,有什么关系。 2 2 2( ) ( )x a y b r 问题 2:方 程 表示如图的圆,2 2 2( ) ( )x a y b r ( 1)圆上任一点2 2 200( , ) ( ) ( ) 的 坐 标 是 方 程M x y x a y b r( , ) 标 的 点 在 以 为 圆 心 ,以 为 半 径 的 圆 上 , ) ( ) ( )( , ) ( ) 若 是 方 程的 解 , 则 以x y x a y br x 0 , )M x 2( ) ( )x a y b r 线 x,y) 方程 f(x,y)=0通过探究可知,在直角坐标系建立以后,平面内的点与数对( x,y)建立了一一对应关系 , 3、与之对应的实数对的变化就形成了方程f(x,y)=直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程 f(x,y)=0的实数解建立了如下的关系:( 1)曲线上点的坐标都是这个方程的解;( 2)以这个方程的解为坐标的点都是曲线上的点 个方程叫做曲线的方程;这条曲线叫做方程的曲线 果曲线 x,y)=0,那么点 在曲线 , )P x ( , ) .f x y 问题 3:曲线 f(x,y)=0的解,能否说 f(x,y)=0是曲线 : 不能,还要验证以方程 f(x,y)=0的解为坐标的点是不是都在曲线上 ,如 ,以原点为圆心,以 2为半径的圆上半部分和方程 提升总结 4、】问题 4:曲线的方程与方程的曲线有什么区别。 曲线的方程与方程的曲线是两个不同的概念,“ 曲线的方程 ” 强调的是图形所满足的数量关系;而“ 方程的曲线 ” 强调的是数量关系所表示的图形 方程成为曲线(几何图形)的代数表示,从而将研究曲线的性质转化到讨论相应方程的问题上 证明与两条坐标轴的距离的积是常数 k(k0)的点的轨迹方程是 k ( 1)设 是轨迹上的任意一点 与 与 所以00( , )M x x y k00( , ) .x y x y k即 是 方 程 的 解1 1 12 ( , )M x y x y k( ) 设 点 的 坐 标 是 方 程 的 解 , 则11 .x y k即11 , 5、x y k而 正是点 轴的距离,因此点 k,点 由 (1)(2)可知 , 是与两条坐标轴的距离的积为常数 k(k0)的点的轨迹方程 xy k 方程 1()的曲线形状是 ( )解析: 选 1表示以原点为圆心,半径为1的单位圆,而约束条件 则表明单位圆上点的横、纵坐标异号,即单位圆位于第二或第四象限的部分故选 选 C.由 x,得 x(x y 1) 0,即 x 0或 x y 1 选 C.【 变式练习 】方程 )A一个点 B一条直线C两条直线 D 曲线 f(x, y) 0的解 ” 是正确的,则下列命题为真命题的是 ( )A不是曲线 定不满足方程 f(x, y) 0B坐标满足方程 f(x, y) 0的点 6、均在曲线 线 f(x, y) 0的曲线D不是方程 f(x, y) 0的解,一定不是曲线 路探索 从定义入手,考查定义中的两个条件 )A x 与 yB y lg y 2lg 1 与 y 1) x 2)D 1 与 |y|21 x解析: 选 x与 y 所表示的曲线是 _122 : y x x 解 析答案: 以 (1, 0)的方程为 x ,说明曲线 求该曲线与 4 y解: 由 x ,得 4, 又 x0,所以方程 x 表示的曲线是以原点为圆心,2为半径的右半圆 ,从而该曲线 C与 面积 S 4 y24 y在轨迹的基础上将轨迹和条件化为曲线和方程,当说某方程是曲线的方程或某曲线是方程的曲线时就意味着具备上述两个条件,只有具备上述两个方面的要求,才能将曲线的研究化为方程的研究 ,几何问题化为代数问题,以数助形正是解析几何的思想,本节课正是这一思想的基础 征服自己的胜利比起来,都是微不足道;所有的失败,与失去自己的失败比起来,更是微不足道 .。高中数学(人教A版)选修2-1 2.1.1 曲线与方程 课件(共20张ppt)
相关推荐
教师小结并揭示课题。 设计意图 :通过惊心动魄的画面,学生直接感知了解地球正在面临的问题,唤起学生环保的意识。 (二)、讲授新课: 教师揭题:真因为如此人类才确立了一个非常有意义的日子 —— 《世界地球日》,最近学校要进行一次环保宣 传活动,我想大家可以利用你身边的材料进行一次环保招贴画的创作,来纪念这个全球性的日子。 【百度搜索】 设计意图 :引出课题,学生直接明了本课的学习目的。 提问
欣赏一段视频:《瑶族舞曲》 说说你最大的感受是什么。 欣赏中外古代及现代有关重复 的形的艺术作品,使学生直观了解重复的形的特征和规律 中国古代桥梁栏杆上重复的形 欧洲古代建筑上重复的形 中国新石器时代彩陶上重复的形 现代安乐椅上重复的形 现代公寓上重复的形 现代妇女服饰上重复的形 人民大会堂的内部结构与摆设上重复的形 地毯上的花纹是重复的形 出示课题《重复的形》 二、新授内容 师 : 看了视
用各种材料进行再造设计。 难点:尝试用大胆的手法去创作表现。 教学思路:情景导入 ——教学新课 ——分组合作 ——汗衫展示 ——小结 ——课后延伸。 教学过程: 1组织教学:课前交流,观看上节课的画汗衫课件。 2情景导入:欣赏白汗衫的时装表演, (白色的汗衫简单大方,但是不够特别, 也就是我们所说的不够性格 ),因而,这节课我们就上一节课的《画汗衫》上一 节汗衫装饰课,引出课题《画汗衫之制作篇》
原始部落里,人用会戴上这种面具,用来威吓敌人、驱魔降妖。 面具发展到现代,戴上面具可以使我们变得更加神秘,更加漂亮,有了一种装饰性的作用。 今天这节课就让我们走进非常有魅力的中国民间玩具 —— 面具的世界。 引出课题 《独具魅力的面具》 (二)欣赏面具,探索方法 师:知道了面具的作用,不妨去欣赏一下各种各样的面具,看看他们有什么特色,哪些地方最吸引你。 欣赏世界各国的面具 尼泊尔面具、非洲面具
1、5)中起决定作用的是什么。 的函数关系。 与底角写出等腰三角形顶角 函数的定义域是函数关系的重要组成部分,实际问题中函数的定义域不仅要使函数表达式有意义,而且还要使实际问题有意义。 有一块半径为 R 的半圆形钢板,计划裁剪成等腰梯形 的下底 底的端点在圆周上,写出这个梯形周长 求出定义域。 变形题: 求梯形周长 习:建筑一个容积为 8000为 6壁的造价为 底的造价为 2总造价 y(元
1、在量词引入 1 对于命题 p,q,命题 pq , pq , 些命题与 p,pq :用联结词“且”把命题 且仅当 p,pq 为真命题 .pq :用联结词“或”把命题 且仅当 p,pq 为假命题 . p:命题 引入 2 在我们的生活和学习中,常遇到这样的命题:( 1) 所有 中国公民的合法权利都受到中华人民共和国宪法的保护;( 2)对 任意 实数 x,都有 0 ;( 3) 存在 有理数 x,使