(人教版)高中数学必修二 《直线与平面平行的判定》ppt课件内容摘要:

1、A E H G F B C D 空间四边形 E, F, G, B, 证,四边形 证明:连接 因为 所以 1/2同理, 1/2所以 所以,四边形 直线与平面有几种位置关系。 复习引入 其中平行是一种非常重要的关系,不仅应用较多,而且是学习平面和平面平行的基础 有三种位置关系:在平面内,相交、平行 a 与平面 平行吗。 直线与平面平行 内有直线 与直线 平行,那么直线 与平面 的位置关系如何。 ab a是否可以保证直线 与平面 平行。 a 直线与平面平行 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行 /(线线平行 线面平行) 直线与平面平行判定定理 ( 1)定义法:证明直线与平面无 2、公共点; ( 2)判定定理:证明平面外直线与平面内直线平行 直线与平面平行判定 怎样判定直线与平面平行。 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面 已知:空间四边形 , B, 求证: 平面 证明:连接 因为 B,D, 所以 角形中位线的性质) 因为 B C 面平面 ,由直线与平面平行的判断定理得 : 平面 1如图,长方体 中, C D BD( 1)与 ; ( 2)与 平行的平面是 ; ( 3)与 ; 平面 平面 平面 平面 平面 平面 随堂练习 A B2如图,正方体 中, 的中点,试判断 与平面 说明理由 C D 接 , 连接 在 中, E, 的中点 /A C 面A C 面A 面/随堂练习 1证明直线与平面平行的方法: ( 1)利用定义; ( 2)利用判定定理 2数学思想方法:转化的思想 空间问题 平面问题 知识小结 线线平行 线面平行 直线与平面没有公共点。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。