八年级数学下册 第4章 平行四边形 4.6 反证法课件 (新版)浙教版内容摘要:

1、你热爱生命吗。 那么别浪费时间,因 为时间构成生命的材料。 4.6,反证法站。 加在证明一个命题时,人们有时先假设命题“不成,立 ,从这样的假设出发,经过推理得出和”已知条件 矛盾,或者与|语义.基本事实,定理“等巴盾, 从而得出假设命题不成立是错误的,即所求证的命题 正确 .这种证明方法叫做。 反证法在同一平面内,如果两条直线都和第三 条直线平行,那么这两条直线也“互相平行 “.na 知识点合”用反证法证明的基本步骤【例 11用反证法证明*在AAABC 中,若LA二人B AAAC,则了A60”,第一步应假设 (D )和A. 一A一60 B. 一A一60”C. 一A天60” D. 人A乏60”【 2、分析了解题的关键是要弄清人A二60 的反面是什么.【学生解答】思习 CE 玉对应练习1.“a轨的反面应是 (D)A.a天0 B. wa二6 C.a一0 D. ao三02. 用反证法证明*“S是无理数时,最恰当的证法是 加 先假设 CC )A. V3是分数 B. V3是整数C. V3是有理数 D. V3是实数Lo. 用反证法证明*三角形三个内角中至少有两个镜角”时应先假设“三角形三个内角中至多有一个锐角 . :号芭) 证 4. 用反比法证明“若 aoc,c之六则 之六时,应先假设 .S$. 写出下列结论的反面.(1)z 是正数;1攻四 反面:x 是负数或0(2)a,p,c 中至少有一个是负数;反 3、面:co,o,c 中没有一个负数(3)AABC 中至多有一个角是直角或钝角.反面:AAABC 中至少有两个直角或锰角.也 知识点仿”反证法的应用【例 2如图,在AABC 中,AB一 反4AC,P为AABC 内一点,且APB”了j了APC. 求证, PB天PC.二 【分析角是的 关键是要但得皮讶法的意义及步骤.【学生解答】 证明:假设 PB王PC,则和PBC王人人PCB. AB王AC,。 ABC=ACB,. ABP = ACP,.AA4ABPSAACP(SA4AS). APB王APC. 这与APB b和相委后 不成立, PB天PC. on 【方法总结(1) 当直接证明不易证明结论时,可以考虑利用 4、反证法证明. (2)在考虑结论不成立时,要注意考虑结论的反面所有可能的情况. 如果只有一种,那么否定一种就可以了;如果有多种情况,则必须一一否定. 加对应练习 6. 求证:两条直线被第三条直线所截,如果同旁内角不互补,那么这两条直线不平行解:已知:如图,直线 ,被直线 所截,1十了2夭180? ;或证aa 与也不平行=证明:假设2,则有1十二2三180,这与已知条件“二1十二2和180”相矛盾,V ,因此,原结论“ 与4 不平行?正确. 让12假设 2 不成龟 良 课后作业窦一只间:30 分名2 六,50分 ”一.选择题(每小题 3 分,共 12 分)工 用反证法证明*若 acNc,0Nc,则aNo ,第一步应”假设 CD )AuaNp B.w 与0 垂直C.a 与0 不一定平行 D. a 与2 相交龟 2. 用反证法证明*三角形中至少有一个内角不小于60 时 ,应先假设这个三角形中 (B )A. 有一个内角小于 60”每一个内角都小于 60”有一个内角大于 60-每一个内角都大于 60” 本名忆 PP点Is局 基。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。