2.4 向量的数量积(1)内容摘要:
1、最新海量高中、量的数量积(1)一、课题:向量的数量积(1)二、教学目标:1理解平面向量数量积的概念;2掌握两向量夹角的概念及其取值范围 ;0,3掌握两向量共线及垂直的充要条件;4掌握向量数量积的性质。 三、教学重、难点:向量数量积及其重要性质。 四、教学过程:(一)引入:物理课中,物体所做的功的计算方法:(其中 是 与 的夹角) |Fs(二)新课讲解:1向量的夹角:已知两个向量 和 (如图 2) ,作 , ,则a( )叫做向量 与 的夹角。 018当 时, 与 同向;当 时, 与 反向;18当 时, 与 的夹角是 ,我们说 与 垂直,记作 9aa量数量积的定义:已知两个非零向量 和 ,它们的夹角为。2.4 向量的数量积(1)
相关推荐
本节课的内容以后,验证自己所学习的知识,让孩子们快速的理解三个知识之间的关系 . 补充例题: 一艘轮船以 20km/h的速度从甲港驶往 160km远的乙港, 2h后,一艘快艇以 40km/h的速度也从甲港驶往乙港 .分别列出轮船和快艇行驶的路程 y km 与时间 x h 的函数关系式,并在直角坐标系中画出函数的图象,观察图象回答下列问题: ( 1) 何时轮船行驶在快艇的前面。 ( 2) 何时快艇
1、最新海量高中、面向量的坐标运算一、课题: 面向量的坐标运算二、教学目标:1掌握两向量平行时坐标表示的充要条件;2能利用两向量平行的坐标表示解决有关综合问题。 三、教学重、难点:1向量平行的充要条件的坐标表示;2应用向量平行的充要条件证明三点共线和两直线平行的问题。 四、教学过程:(一)复习:1已知 , ,求 , 的坐标;(3,)a(0,1)b2432已知点 , 及 , , ,求点 、
1、最新海量高中、面向量基本定理一、课题:平面向量基本定理二、教学目标:1理解向量的坐标表示法,掌握平面向量与一对有序实数一一对应关系;2正确地用坐标表示向量,对起点不在原点的平面向量能利用向量相等的关系来用坐标表示;3掌握两向量的和、差,实数与向量积的坐标表示法。 三、教学重、难点:1平面向量的坐标运算;2对平面向量的坐标表示的理解。 四、教学过程:(一)复习:1平面向量的基本定理:
1、最新海量高中、量的数量积(2)一、课题:向量的数量积二、教学目标:要求学生掌握平面向量数量积的运算律,明确向量垂直的充要条件。 三、教学重、难点:向量数量积的运算律和运算律的理解;四、教学过程:(一)复习:1平面向量数量积(内积)的定义及其几何意义、性质;2判断下列各题正确与否:若 ,则对任一向量 ,有 ; ( )0ab0a若 ,则对任一非零向量 ,有 ; ( )b若 , ,则 ; ( )若
2、s(): 是偶函数, , ,x由两角和与差公式展开并化简,得 ,s(式对 恒成立的充要条件是所以, 五、课堂练习: 六、小结:1求 三 角 函 数 值 时 , 要 观 察 题 中 给 出 条 件 及 所 求 结 论 的 特 征 , 特 别 是 角 的 特 征 ,寻 找 恰 当 的 方 法 ( 切 、 割 化 弦 ; 将 式 子 化 为 一 个 角 的 一 个 三 角 函 数 式 等 ),
一个命题是假命题吗 ? (3)举出一个反例可以简明地说明一个命题是 假命题.其实反例还是数学发展的“功臣”.公元前 500年希帕索斯发现等腰直角三角形的直角边与斜边的比不是有理数,这就举出了当时毕达哥拉斯学派认为的“ 一切量都可用有理数来表示”的一个反例。 正是这个反例导致了第一次数学 危机,数学向前大大发展了一步,产生了无理数. ( 2) [教学过程 ] 1.关于课本提供的讨沦活动