苏科版八下114互逆命题2课时内容摘要:

一个命题是假命题吗 ? (3)举出一个反例可以简明地说明一个命题是 假命题.其实反例还是数学发展的“功臣”.公元前 500年希帕索斯发现等腰直角三角形的直角边与斜边的比不是有理数,这就举出了当时毕达哥拉斯学派认为的“ 一切量都可用有理数来表示”的一个反例。 正是这个反例导致了第一次数学 危机,数学向前大大发展了一步,产生了无理数. ( 2) [教学过程 ] 1.关于课本提供的讨沦活动 这节课应进一步关注《 标准》中“经历观察、实验、猜想、证明等数学活动,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己 的观点”等,这些过程性目 标的落实。 课本提供了一个根据条件观察图形、做出猜想、证明猜想的讨论活动.设计这个活动,学生既经历合情推理, 又经历演绎推理,不断发展初步的演绎推理能力.实际教学中,在学生做出猜想并表述各自的证明思路后,可以讨论以下问题: (1)在图 11 16中,如果 DE//BF,∠ B=∠ D,那么你得到什么结论 ?证明你的结论. (2)在图 1116中,如果 AB//CD, DE//BF,那么你得到什么结论 ?证明你的结沦.。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。