湘教版数学九下圆与圆的位置关系1内容摘要:
) A 4 B 6 C 0 D 以上都不对 创设情境,引 发探究 我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢 ?没有调查就没有发言权. 下面我们就来进行有关探讨. 师生互动、探究新知 在一张透明纸上作一个 ⊙ O.再在另一张透明纸上 作一个与 ⊙ O1 半径不等的 ⊙ O2.把两张透明纸叠在一起,固定 ⊙ O1,平移 ⊙ O2, ⊙ O1与 ⊙ O2有几种位置关系 ? 提示: (1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部; (2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一。湘教版数学九下圆与圆的位置关系1
相关推荐
本节课要掌握 1.形如 a ( a≥ 0)的式子叫做二次根式,“ ”称为二次根号. 2.要使二次根式在实数范围内有意义, 必须满足被开方 数是非负数. 六、布置作业 二次根式( 2) 教学目标 理解 a ( a≥ 0)是一个非负数和( a ) 2=a( a≥ 0),并利用它们进行计算和化简. 通过复习 二次根式的概念,用逻辑推理的方法推出 a ( a≥ 0)是一个非负数,用具体数据结合算术
说明不了什么问题。 在这里请同学掷骰子,来验证上述两位同学的说法不正确。 例 3 小强的自行车失窃了,他想知道所在地区每个家庭平均发生过几次自行车失窃事件.为此,他 和同学们一起,调查了全校每个同学所在家庭发生过几次自行车失窃事件. 分析 这样抽样调查是不合适的.虽然他们调查的人数很多,但是因为排除了所在地区那些没有中学 生的家庭,所以他们的调查结果不能推广到所在地区的所有家庭。 想一想:小强
都是 1,顺次连接五个圆心得五边形 ABCDE,求图中五个扇形的面积之和(阴影部分). 【例 11】 如图是赛跑跑道的一部分,它由两条直线和中间半圆形弯道组成的.若内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑道有相同的长度,如果跑道宽 1. 22米,则外跑道的起点应前移 米.(π取 3. 14,结果精确到 0. 01米) 二、课后练习 1.在半径为 12的⊙ O中, 150176
流。 ( 1)观察上图,在画出的无数个圆周角中,这些圆周角与圆心 O 有几种位置关系。 ( 2)设 BC 所对的圆周角为∠ BAC,除了圆心 O 在∠ BAC 的一边上外,圆心 O 与∠ BAC还有哪几种位置关系。 对于这几种位置关系,结论∠ BAC= 21 ∠ BOC还成立吗。 试证明之. 通过上述讨论发现:__________________________________________。
3、国城市将迎来一波老年人口加速增长的高潮4推动农民工返乡创业措施正确的是()减少返乡创业中可能面临的生活危机与家庭风险制定对青年和高等教育水平农民工的激励政策成立回乡创业者服务中心,提供培训服务深化政策的实施力度,保护政策的持续和公平A BC D(2016潮州质检)读广东省历次人口普查年龄结构统计图,完成 56 题。 5从图中可以看出广东( )A老龄化问题严重
米,才有使喷出的水流不致落在池外。 (2)如果修水池每平方米造价为 130 元,问修这个水池至少要花多少钱。 (π取 ,精确到元) 课堂练习: 小明是学校田径队的运动员,根据测试资料分析,他掷铅球的出手高度 (铅球脱手时高地面的高度 )为 2m,如果出手后铅球在空中飞行的水平距离 x(m)与高度 y(m)之间的关系为二次函数 y= a(x- 4)2+ 3,那么小明掷铅球的出手点与铅球落地