整式的加减复习1内容摘要:
指数相同; (3)与系数无关; (4)与字母的顺序无关。 两相同 两无关 合并同类项 是整式加减的基础。 法则: 合并同类项,只把系数相加减,字母及字母的指数不变。 注意以下几点: (前提:正确判断同类项 ) (1)常数项是同类项,所以几个常数项可以合并; (2)两个同类项系数互为相反数,则这两项的和等于 0; (3)同类项中的“ 合并 ”是指同类项 系数求和 ,把所得到结果作为新的项的 系数 , 字母与字母的指数不变。 (4)只有同类项才能合并,不是同类项就不能合并。 为什么。 ( 1) x2y与 3yx2。 (2) a2b2与 ab2; ( 3) 3与 6; (4) 2a与 ab 2. 指出 4x2 8x + 5 3x2 6x 2中的同类项 不是 是 不是 是多项式中的项: 4x2 , 8x , + 5 , 3x2 , 6x , 2 同类项: 4x2与 3x2 8x与 6x + 5与 2 : (1)xy2– xy2 (2) – 3x2y 3xy2 + 2x2y 2xy2 : 与 是同类项,求 m、 n的值 . 2 _ 3 x3my3 1 _ 4 x6yn+1 : 与 能合并 .则 m= ,n= . 12 mmxy 23 nxy a, b的多项式 不 ab含项 . 则 m= . 2 2 26 8 2a ab b m ab b 2a2bn+1与 4amb3是同类项,则 m=___, n=__。 5xy2+axy2=2xy2,则 a=____。 6xy3x24x2y5yx2+x2中没有同类项的项是 ___ 2 33 2 2 - 7 6xy 下列各题合并同类项的结果对不对。 若不对, 请改正。 (1)、 (2)、 (3)、 (4)、 练习 (合并下列各式的同类项 ) (1)xy2– xy2 (2) – 3x2y 3xy2 + 2x2y 2xy2 1 __ 5 (3)4a2+3b2+2ab4a24b2 (4)mn2+mn2 422 532 xxx xyyx 523 437 22 xx099 22 baba √ [例 1] 若 5a3bm+1与 8an+1b2是同类项,求 (mn。整式的加减复习1
本资源仅提供20页预览,下载后可查看全文
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。
用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。
相关推荐
组织诊断报告(住总)
1、 2016年 12月 1日 组织结构诊断报告 北大纵横管理咨询公司 2001年 8月 机密 2016年 12月 1日 重要说明 本次汇报为中期汇报,所有观点均非最终结论 2016年 12月 1日 项目进程 第 107/235 第 407/268 第 707/293 第 1308/045 资料搜集 内部研讨 高层访谈 内部研讨 问卷设计 中期报告汇报 访谈阶段 中层访谈: 66人次;高层访谈
组织诊断报告(大朝山)
1、机密云南大朝山水电有限责任公司组织诊断报告北大纵横管理咨询公司二零零二年八月 08/2002-PAGE1项目进程第1-2天 第3一?天 第8-13天, 第14-16天 第17-27天 第28天项目启动资料搜集内部研讨 略 谈资料搜集整理,内部研讨 工地访谈间卷设计工地间郑发放。 刘居这淡2 损写报告本部间关发放。 大记扫和问着分析 加内部研讨、汇。 一期报告汇报、报 证区确定下阶段计划人
敬业与乐业公开课ppt课件ppt
使文章精练、典雅; • 增强说服力,因为经典名句是世人公认的真理。 •布置作业 梁启超 •第二课时 细读课文 探究写法 探究课文论证过程和论证方法,注意找出主要段落的中心句。 引出中心论点 “我确信“敬业”与“乐业”四个字,是人类生活的不二法门。 ” 引用儒家经典 《 礼记 》 、道家经典 《 老子 》 中格言 第一部分 • 分论点一:论述 “ 要敬业 ” • 分论点二:论述 “ 要乐业 ”