二次函数的图象3内容摘要:

当 a> 0时,开口向上。 当 a< 0时,开口向下; ( 2)对称轴: 对称轴直线 x=h。 ( 3)顶点坐标: 顶点坐标是( h, 0) ( 4)函数的增减性: 当 a> 0时, 对称轴左侧 (x ﹤ h时 )y随 x增大而减小, 对称轴右侧 (x ≥ h时 )y随 x增大而增大; 当 a< 0时, 对称轴左侧 y随 x增大而增大, 对称轴右侧 y随 x增大而减小。 ( 5)最值 抛物线 与抛物线 有什么关系。 可以发现,把抛物线 向左平移 1个单位,就得到抛物线 ;把抛物线 向右平移 1个单位,就得到抛物线 .   21 12yx     21 12yx   212yx212yx  21 12yx   212yx 21 12yx  - 2 2 - 2 - 4 - 6 4 - 4  2121  xy  2121  xy221 xy 上下平移时:上加下减(抛物线上移,高度变高,要使 y变大,则需要加;类似的抛物线下移,高度变低,要使 y变小,则需要减。 ) 左右平移时:左加右减(抛物线左移。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。