二次根式的复习课件内容摘要:

23 2m32418 8 3 、 是同类二次根式 下列哪些是 同类二次根式 二次根式加减运算的步骤 : (1)把各个二次根式化成最简二次根式 (2)把被开方数相同的二次根式合并 .(只能合并被开方数相同的二次 根式) :下列计算是否正确 ?为什么 ?    ;;222225321练习   3 2 2 3 3   D Χ Χ Χ ( )    4554325CA   aaaDB2123211238例:计算 332232( 1 ) 3 )()(解:原式 3332223 322 12188( 2 ) 342924 解:原式322322 3225 小结: 先化简, 再合并同类 练习:计算 3250( 1 ) 2425 453227( 2 ) 593239 解:原式533233 533 216225 解:原式2934483814122 3326233231223433234323223331231638116342解:原式2222 )()()( abcabab 已知实数 a, b, c在数轴上的位置如图所示,化简代数式: bbb  2,00,  baba )()( 2 baba 0,0,0  caca )()( 2 caca 0,  abab )()( 2 abab  cbaabcabababcabababcabab。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。