高考物理模型组合讲解 等效场模型内容摘要:

1、 第 1 页 模型组合讲解 等效场模型模型概述复合场是高中物理中的热点问题,常见的有重力场与电场、重力场与磁场、重力场与电磁场等等,对复合场问题的处理过程其实就是一种物理思维方法。 所以在复习时我们也将此作为一种模型讲解。 模型讲解例 1. 粗细均匀的 U 形管内装有某种液体,开始静止在水平面上,如图 1 所示,已知:L=10此 U 形管以 4m/加速度水平向右运动时,求两竖直管内液面的高度差。 ()2/10 1解析:当 U 形管向右加速运动时,可把液体当做放在等效重力场中, 的方向是等效时两边的液面应与等效重力场的水平方向平行,即与 方向垂直。 设 的方向与 g 的方向之间夹角为 ,则 ,所以, 2、例 2. 如图 2 所示,一条长为 L 的细线上端固定,下端拴一个质量为 m 的带电小球,将它置于一方向水平向右,场强为正的匀强电场中,已知当细线离开竖直位置偏角 时,小球处于平衡状态。 图 2(1)若使细线的偏角由 增大到 ,然后将小球由静止释放。 则 应为多大,才能使细线到达竖直位置时小球的速度刚好为零。 (2)若 角很小,那么(1)问中带电小球由静止释放在到达竖直位置需多少时间。 解析:带电小球在空间同时受到重力和电场力的作用,这两个力都是恒力,故不妨将两个力合成,并称合力为“等效重力” , “等效重力”的大小为: 第 2 页 ,令22里的 可称为“等效重力加速度” ,方向与竖直方向成 角,如图 3、 3 所示。 这样一个“等效重力场”可代替原来的重力场和静电场。 图 3(1)在“等效重力场”中,观察者认为从 A 点由静止开始摆至 B 点的速度为零。 根据重力场中单摆摆动的特点,可知。 2(2)若 角很小,则在等效重力场中,单摆的摆动周期为,从 AB 的时间为单摆做简谐运动的半周期。 即。 t2思考:若将小球向左上方提起,使摆线呈水平状态,然后由静止释放,则小球下摆过程中在哪一点的速率最大。 最大速率为多大。 它摆向右侧时最大偏角为多大。 点评:本题由于引入了“等效重力场”的概念,就把重力场和电场两个场相复合的问题简化为只有一个场的问题。 从而将重力场中的相关规律有效地迁移过来。 值得指出的是,由于重力场和 4、电场都是匀强场,即电荷在空间各处受到的重力及电场力都是恒力,所以,上述等效是允许且具有意义的,如果电场不是匀强电场或换成匀强磁场,则不能进行如上的等效变换,这也是应该引起注意的。 巩固小结:通过以上例题的分析,带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为:确定研究对象;进行受力分析(注意重力是否能忽略) ;根据粒子的运动情况,运用牛顿运动定律、动能定理或能量关系、动量定理与动量守恒定律列出方程式求解。 模型要点物体仅在重力场中运动是最简单,也是学生最为熟悉的运动类型,但是物体在复合场中的运动又是我们在综合性试题中经常遇到的问题,如果我们能化“复合场”为“重力场” ,不仅能起到 5、“柳暗花明”的效果,同时也是一种思想的体现。 如何实现这一思想方法呢。 如物体在恒力场中,我们可以先求出合力 F,在根据 求出等效场的加速度。 将物体的运动转化为落体、抛体或圆周运动等,然后根据物体的运动情景采用对应的规律。 误区点拨 第 3 页 在应用公式时要注意 g 与 的区别;对于竖直面内的圆周运动模型,则要从受力情形出发,分清“地理最高点”和“物理最高点” ,弄清有几个场力;竖直面内若作匀速圆周运动,则必须根据作匀速圆周运动的条件,找出隐含条件;同时还要注意线轨类问题的约束条件。 模型演练质量为 m,电量为+q 的小球以初速度 以与水平方向成 角射出,如图 4 所示,如0保证小球仍沿 方向做直线运动,试求所加匀0了这个电场后,经多长时间速度变为零。 图 4答案:由题知小球在重力和电场力作用下沿 方向做直线运动,可知垂直 方向上合0者用力的分解或力的合成方法,重力与电场力的合力沿 所在直线。 0建如图 5 所示坐标系,设场强 E 与 成 角,则受力如图:0图 5由牛顿第二定律可得:0 得: 得: 时,E 最小为90方向与 垂直斜向上,将 代入式可得v90在场强最小时,小球沿 做加速度为 的匀减速直线运动,设运动时间为0vt 时速度为 0,则:,可得: 第 4 页。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。