第十三课时和与积的奇偶性内容摘要:

━┓ ┃ ┃ 算 式 ┃ 和是奇数还是偶数 ┃ ┣━━━━━━━━━━━╋━━━━━━━╋━━━━━━━━━━┫ ┃ 3个或 4个数连加 ┃ ┃ ┃ ┣━━━━━━━━━━━╋━━━━━━━╋━━━━━━━━━━┫ ┃ 5个或 5个以上数连 ┃ ┃ ┃ ┗━━━━━━━━━━━┻━━━━━━━┻━━━━━━━━━━┛ (2)观察比较。 交流学生的算式,选择板书一些算式、得数。 出示要求,让学生在四人小组里交流算式并讨论: ①观察每个连加算式,加数里有几个偶数、几个奇数,和是什么数。 ②和是奇数还是偶数,与 这些加数中的什么有关。 ③你发现在什么情况下和是奇数。 什么情况下和是偶数。 提问:通过观察、比较,你有什么发现。 启发学生交流、比较,说说自己的想法,逐步点拨得出加数中奇数个数与和的奇偶性的关系,并联系两个数相加的情况,归纳相应的规律。 小结:我们从这些加法算式中发现,加数里奇数的个数是奇数,和就是奇数;奇数的个数是偶数,和就是偶数。 这就是和的奇偶性规律。 (加数里奇数的个数是奇数,和是奇数奇数的个数是偶数,和是偶数) 追问:现在让你不计算,判断连加算式的和是奇数还是偶数,你认为只要看什么。 3.应用规律,判断结果。 提问:回头看一看, 1+3+5+„„ +29的和是奇数还是偶数。 为什么。 说明:。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。