powerseriesexpansionanditsapplications-外文文献(编辑修改稿)内容摘要:

xn n∞= ′=+++ +∑ … … .(954)Itisthefunction()fxthepowerserisexpresion,if,asum ingthefunctionf(x)canbexpresdaspowerseris209NO .8O O OPrincipleofmathematicalnalysi21020200() n nn nnfxaxaaxaxax∞= =+++++∑ … … , (95)Wel,acordingtotheconvergenceofpowerseriscanbeitem izdwithinthenatureofderivation,andthenm ake 0x=(powerserisaparentlyconvergesinthe0x=point),itiseasytoget()20 1 2 (0) 0)(0), (0), , ,2! !n nnf fafafxa xa xn′′== = =… … .Substiutingthem into(95)type,in eand()fxtheMaclurinexpansionf(954) m ary, ifthefunctionf(x)containszeroinarngeofarbitrayorderderivative,andinthisrangeofMaclurinform ulaintherm aindertozeroasthelim t(when→∞,)then,thefunctionf(x)canstartform ingas(954) ()20 0 00 0 0 0() () )()() ( ) ( ) ( )1! 2! !n nfx fx fxfxfx xx xx xxn′ ′=+ −+ −++ −… … ,prim aryfunctionfpowerserisexpansionMaclurinform ulausingthefunction()fxexpandeinpowerserism ethod,caledthedirectexpansionm ple1Testhefunction()xfxe=())n xfxe=,(1,2,3,)n=…Therfore ()(0)(0)(0)0)1nf f f f′ ′=== =… ,Sowe。
阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。