理科
人所占比例分别为 40%、 50%、 10%. • (2)游泳组中,抽取的青年人数为 • 200 40%=60(人 ); • 抽取的中年人数为 200 50%=75(人 ); • 抽取的老年人数为 200 10%=15(人 ). • 点评: 分层抽样的特点是按比例抽取,这是分层抽样问题中一个主要计算依据 . 34343421 • 在 120个零件中,一级品 24个,二级品 36个,三级品 60个
续, • 所以 又 参考题 题型 函数的连续性与导数的关系分析 1l i m 21xfxx , 1l i m 1 .x f x f 1l i m 21x fxx ,26 • 所以 • 即 f(1)=0. • 所以 1111li m li m 11li m ( 1 ) li m 0 2 01xxxxfxf x
使 ∠ x ′ O ′ y ′ =45176。 . 题型 3 斜二测画法作图问题 20 • (2)以 O′为中点,在 x′轴上取 B′ • C′=BC, 在 y′轴上取点 A′,使 O′A′ • = OA. • (3)连结 A′B′, A′C′,则 △ A′ • B ′C′为正 △ ABC水平放置的直观图 . • 设正 △ ABC的边长为 a,过 A′作 x′轴 • 的垂线,垂足为 D′, •
. !!nm!!nm28 第十章 排列、组合、 二项式定理和概率 第 讲 (第三课时) 29 题型 7 直接法解排列、组合综合应用题 • 1. 已知 10件不同产品中共有 4件次品 , 现对它们进行一一测试 , 直至找到所有次品为止 . • (1)若恰在第 5次测试 , 才测试到第一件次品 , 第 10次才找到最后一件次品的不同测试方法数是多少 ? • (2)若恰在第 5次测试后 ,
1231l i m。 223nn ncccc ( )( )112131l i m .2 223nn nccc ( )( )22 • :先将表达式作适当变形,使得各部分的极限都存在,且分母的极限不为 0,再利用极限的运算法则求解 .对于项数与 n有关的和 (或积 )的极限,应先求和 (或积 ),再求极限 . • 2. 若分式的分母的极限为 0
11 lg2 lg5 lg1 0 1.ab ab 3l g5 13 高中总复习(第 1轮) 理科数学 全国版 20 点评: 求指数值的问题 , 一般是转化为对数 , 利用对数来处理指数问题 , 对底数不同的对数运算时 , 注意利用换底公式化为同底数的对数进行运算 . 高中总复习(第 1轮) 理科数学 全国版 21 已知 求 的值 . 由已知 得 所以 所以 a lo g
差值比较法比较代数式的大小 34x013014xx1,314xx34x4301314xx13014xx34x43立足教育 开创未来 高中总复习(第一轮) 理科数学 全国版 16 即当 1< x< 时 ,有 logx < 0,1+logx3<2logx2。 当 x=1,即 x= 时,有 logx =0, 所以
. ② 当 l 不与 x 轴垂直时,设直线 l 的方程为 y - 2 = k ( x- 1 ) ,代入双曲线 C 的方程中,并整理得: ( 2 - k2) x2+ 2 ( k2- 2 k ) x - k2+ 4 k - 6 = 0. ( * ) 当 k2= 2 ,即 k = 177。 2 时 ( * ) 为一次方程,显然只有一解; 当 k2≠ 2 时, Δ = 4 ( k2- 2 k )2- 4
x(千元 ) 14.0 销售额 y(千元 ) 40.0 53.0 15 题型 1 求正态总体在某区间内取值的概率 • 1. 求标准正态分布 N(0, 1)在下列区间内取值的概率 : • (1)(1, 2)。 (2)( , +∞). • 解: (1)P(1< x< 2)=Φ(2)Φ(1) • =Φ(2)[ 1Φ(1)] =Φ(2)+Φ(1)1 • =+=. • (2)P(x>
A3) = P ( A1) P ( A2) P ( A3) =15( 1 - p )( 1 - q ) =6125, P ( ξ = 3 ) = P ( A1 A2 A3) = P ( A1) P ( A2) P ( A3) =45pq =24125, 整理得 , pq =625, p + q = 1. 注意到 p q , 故可解得 p =35, q =25. 26 (3) 由题意知, a =