切线
长; 2)求 CE的长; 3)求 cos∠ ABF. F E A D C B O 如图, Rt⊿ ABC的内切圆切三边于 D、 E、 F, ⊿ ABC的面积为 S. 1) 若 AD=3, BD=2, 求的值; 2)求证: S=ADBD 对于任何一个直角 三角形都成立 . A C B F E D O 如图, ⊙ O中,弦 AB∥ CD,过 B作 O的切线交 CD的延长线于P. 求证:
C如图, AP、 BQ是 ⊙ O的两条切线,且 ∠ PAB=50176。 ∠QBD=80 176。 ,求 ∠ ACD的度数。 PQOABDC三、检测练习 在 Rt⊿ ABC中, ∠ A=90176。 AB=AC=a, ⊙ O分别与 AB,AC相切于点 E,F,圆心 O在 BC上,则 ⊙ O的半径为。 如图, OA, OB是 ⊙ O的两条互相垂直的半径,弦 BD交 OA于点 C,切线 DE与
课内容 【 学生 】 命题:经过半径的在圆上的端点且垂直于半 径的直线是圆的切线。 证明 定理:启发学生分清命题的题设和结论,写出已 知、求证,分析证明思路,阅读课本 P60 定理:经过半径外端并且垂直于这条半径的直线是圆的切线. 定理的证明: 已知: 直线 l经过半径 OA的外端点 A,直线 l⊥ OA, 求证 : 直线 l是⊙ O的切线 证明:略 定理的符号语言: ∵ 直线 l⊥ OA,直线
2 3 O B A C D 证明:如图,连接 OC. 练习 1 按图填空: (1). 如果 AB是 ⊙ O的切线, 那么 A O B ⊙ O的切线 (2). 如果 OA⊥ AB,那么 AB是 切点 (3).如果 AB是 ⊙ O的切线, OA⊥ AB,那么 A是 ⊥ OA AB. 练习 2 如图的两个圆是以 O为圆心的同心圆,大圆的弦 AB是小圆的切线, C为切点 .求证: C是 AB的中点 .
O的切线。 O A B C 分析: 欲证 AB是 ⊙ O的切线,由于 AB过圆上点 C,若连结 OC,则AB过半径 OC的外端,只需证明 OC⊥AB . 例 已知:直线 AB经过 ⊙ O上的 点 C,并且 OA=OB,CA=CB. 求证:直线 AB是 ⊙ O的切线。 O A B C 证明:如图,连结 OC. ∵ OA=OB,CA=CB ∴ OC 是等腰△ OAB 底边 BC上的中线 ∴
答题 4.如图 2, AB 是 ⊙ O 的直径, C 为 AB 延长线上的一点, CD 交 ⊙ O 于点 D ,且30AC ( 1)说明 CD 是 ⊙ O的切线; ( 2)请你写出线段 BC 和 AC 之 间的数量关系,并说明理由. 参考答案 1. C 2. B
O的切线。 O A B C 分析: 欲证 AB是 ⊙ O的切线,由于 AB过圆上点 C,若连结 OC,则AB过半径 OC的外端,只需证明 OC⊥AB . 例 已知:直线 AB经过 ⊙ O上的 点 C,并且 OA=OB,CA=CB. 求证:直线 AB是 ⊙ O的切线。 O A B C 证明:如图,连结 OC. ∵ OA=OB,CA=CB ∴ OC 是等腰△ OAB 底边 BC上的中线 ∴
2 3 O B A C D 证明:如图,连接 OC. 练习 1 按图填空: (1). 如果 AB是 ⊙ O的切线, 那么 A O B ⊙ O的切线 (2). 如果 OA⊥ AB,那么 AB是 切点 (3).如果 AB是 ⊙ O的切线, OA⊥ AB,那么 A是 ⊥ OA AB. 练习 2 如图的两个圆是以 O为圆心的同心圆,大圆的弦 AB是小圆的切线, C为切点 .求证: C是 AB的中点 .
O的切线。 O A B C 分析: 欲证 AB是 ⊙ O的切线,由于 AB过圆上点 C,若连结 OC,则AB过半径 OC的外端,只需证明 OC⊥AB . 例 已知:直线 AB经过 ⊙ O上的 点 C,并且 OA=OB,CA=CB. 求证:直线 AB是 ⊙ O的切线。 O A B C 证明:如图,连结 OC. ∵ OA=OB,CA=CB ∴ OC 是等腰△ OAB 底边 BC上的中线 ∴
O的切线。 O A B C 分析: 欲证 AB是 ⊙ O的切线,由于 AB过圆上点 C,若连结 OC,则AB过半径 OC的外端,只需证明 OC⊥AB . 例 已知:直线 AB经过 ⊙ O上的 点 C,并且 OA=OB,CA=CB. 求证:直线 AB是 ⊙ O的切线。 O A B C 证明:如图,连结 OC. ∵ OA=OB,CA=CB ∴ OC 是等腰△ OAB 底边 BC上的中线 ∴