微积分
xf 2,1,0k))(())(())(())(())(())(()(1202102210120120202102 xxxxxxxxfxxxxxxxxfxxxxxxxxfxL))(()()())(()()())(()()()(1202102210120120202102
) 的函数。 且已知在时刻 t时,价格 P 的变化率与过剩需求 D S 成正比,比例系数为 2 ,试求价格 P 与时间 t 的函数关系,( 设初始价格02P 元时 ) ,并问当 t = 时价格应为多少。 练习题 2. 已知商品的需求量 D 和供给量 S 都是价格 p 的函数 bppSSpapDD )(,)(2( a 0 , b o 为常数 ) ,价格 p 是时间 t
310,)( 21 xxxxf不满足在闭区间上 连续 的条件; ],[,1)(2 baxxxf 且 0ab不满足在开区间内 可微 的条件; 以上两个都可说明问题 . 一、 填空题: 1. 函数 4)( xxf 在区间 [1 ,2] 上满足拉格朗日中值定理,则 ξ =_ ____ _ _ . 2. 设)4)(3)(2)(1()( xxxxxf, 方程0)( xf有 _
(2xxx ,)1(1)1(133 xx,0y令 .0x得可能拐点的横坐标,li m)3( yx。 没有水平渐近线,li m 01 yx又 ,lim 01 yx。 1 的铅直渐近线为曲线 yx ,li m 01 yx ,li m 01 yx。 1 的铅直渐近线为曲线 yx xyax
e ydx x , 4 0 p x y . 三、质量 克为 1 的质点受外力作用作直线运动 , 这外力 和时间成正比 , 和质点运动的速度成反比 . 在 10t 秒时 , 速度等于 25 0 /g c m s, 外力为 24/ g c m s, 问 该 质点 从运动开始经过了一分钟后的速度是多少 ? 四、小船从河边点 O 处出发驶向对岸 ( 两岸为平行直线 ) . 设 a船速为 ,
o s(]s i n)[ ( co sc o s)s i nc o s(]s i n)[ ( co s2112122121的充要条件为注意到 0D1)12(12,0s i n0c osakaka 或即 得为整数,将上式代入其中 k22112211 , bBbBbBbB 或,故得方程的通解为或由于
分区域为平面区域,被积函数为定义在平面区域上的二元函数. 思考题解答 一、 填空题 : 1. 当函数),( yxf在闭区域 D 上 ______ _______ _ 时 ,则其在 D 上的二重积分必定存在 . 2. 二重积分 ( , ) dDf x y 的 几 何 意 义 是_____ _______ ____ _______ __ _______ ___. 3. 若),( yxf在 有
思考题解答 不存在 . 假设有原函数 )(xF 0,0,0,)(xCxxCxCxxF但 )( xF 在 0x 处不可微,故假设错误 所以 在 内不存在原函数 . ),( )(xf结论 每一个含有 第一类间断点 的函数都没有原函数 . 一、 填空题: 1. 一个已知的连续函数,有 ______ 个原函数,其中任意两个的差是一个 ______ ; 2. )(
f x y dx yx x y 。 4. 2 d d ,Dy x x y 其中 D : 20,11 yx . 三、设平面薄片所占的闭区域 D 由直线 ,2 yx xy 和 x 轴所围成 , 它的面密度22),( yxyx , 求该薄片的质量 .四、 求由曲面222 yxz 及2226 yxz , 所围成的立体的体积 .一、 1.
:代入方程得xxBxBxBxBxBxB21021021044)1(3)1(3)2()2(101,50710 BB可得,)4(),101507(21 AAyxxyxxx 又通解为21 )4()101507( AAxxy xx 三、小结 练习题 )2,2(,022)2()1,1(,0164)1(